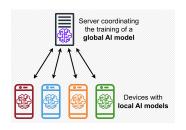
When the Curious Abandon Honesty: Federated Learning Is Not Private

Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, Nicolas Papernot

IEEE Euro S&P 2023

Federated Learning

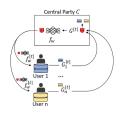


- Central party coordinates the training
- Data does not leave personal devices
 - Often presented as privacy-preserving
- ▶ Attacker observing gradient updates can reconstruct training data

Contributions

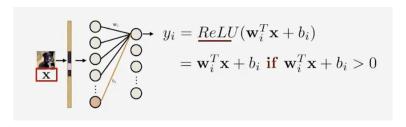
- Novel data reconstruction attack
 - Scales to large mini-batches of data
 - Computationally cheap
 - Stealthy
- ▷ Empirically demonstrate success of attack

Threat Model



- ▶ Untrusted, Active Central party
 - Knows type, domain, and dimensionality of data
 - ⋆ Possesses some data from a similar dataset (preferably)
 - ▶ Instantiates the model, holds full control over the shared model weights
 - Architecture: Layer 1 is fully connected, with ReLU activation
 - Can read users' gradient updates in each iteration
 - Can choose which users to query in each iteration

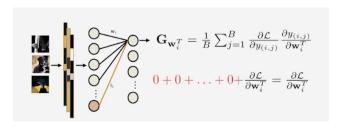
Passive Attack: SGD



$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}_i^T} = \frac{\partial \mathcal{L}}{\partial y_i} \frac{\partial y_i}{\partial \mathbf{w}_i^T} = \frac{\partial \mathcal{L}}{\partial b_i} \mathbf{\overline{X}^T}$$

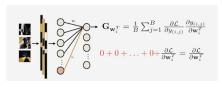
- ▶ Gradient contains a scaled version of the input
- ▶ Computed in the backward pass, comes at zero cost

Passive Attack: Mini-Batch SGD



- ▶ If lucky, exactly 1 training point x in the mini-batch has non-zero gradients
 - ▶ Iff exactly 1 training point x in the mini-batch has positive input
 - Reduces to the SGD case
 - Can reconstruct the training point x

Methodology



- Active central party, Mini-Batch
- \triangleright Assume that the data features are scaled in the range [0,1]
- \triangleright Let N and P denote the indices with negative and positive weights

$$\sum_{n\in\mathbb{N}} w_i^{(n)} x_n < \sum_{p\in\mathbb{P}} w_i^{(p)} x_p.$$

- ▶ Want the inequality to hold rarely (hopefully only for a single data point)
 - ▶ #N = #P
 - ▶ Initialize randomly by sampling from a Gaussian
 - ▶ Components in P are scaled down with a factor s < 1

Methodology

- ▷ Scaling decreases the impact of the positive weights
 - Causes most input data points to produce zero gradients
 - ▶ Hopefully only 1 input point has non-zero gradient
- ▶ How to choose s?
 - Trade-off
 - Dataset-dependent
 - Fine-tune on a small dataset which is similar
- ightharpoonup Randomness in the initialization of the weights of each neuron \implies Different data points are reconstructed

Experiments

 \triangleright Mini-batch of 100 data points, 1000 neurons in layer 1

	% Extracted Data	
	Passive	Active
MNIST	5.8%	54%
CIFAR I 0	25.5%	54%
ImageNet	21.8%	45.7%
IMDB	25.4%	65.4%

ightharpoonup Smaller mini-batch sizes, more weight rows \implies Stronger attack

Strengths

- Novel attack
 - Scales to large mini-batches of data
 - Effective
 - Simple
 - Computationally cheap
 - ► Stealthy

Weaknesses

- ▷ Assume the attacker possesses an auxillary dataset
- ▶ Not agnostic of the model architecture
- ▶ Need to get very lucky!
- Not many mitigations suggested
 - Local Differential Privacy (poor utility)
 - Large mini-batches

Discussion

- Weaker attack model
 - Passive attacker
 - ► No auxillary dataset
- ▶ Model agnostic
- ▶ Provable guarantees
- Mitigations

Acknowledgements

- Pictures in slides from
 - The paper on arxiv https://arxiv.org/pdf/2112.02918.pdf
 - ► Talk by Nicolas Papernot https://machinelearning.apple.com/video/curious-honesty
- ▶ Thanks!