CS 7775

Seminar in Computer Security:

Machine Learning Security and

Privacy

Fall 2023

Alina Oprea
Associate Professor
Khoury College of Computer Science

September 28 2023

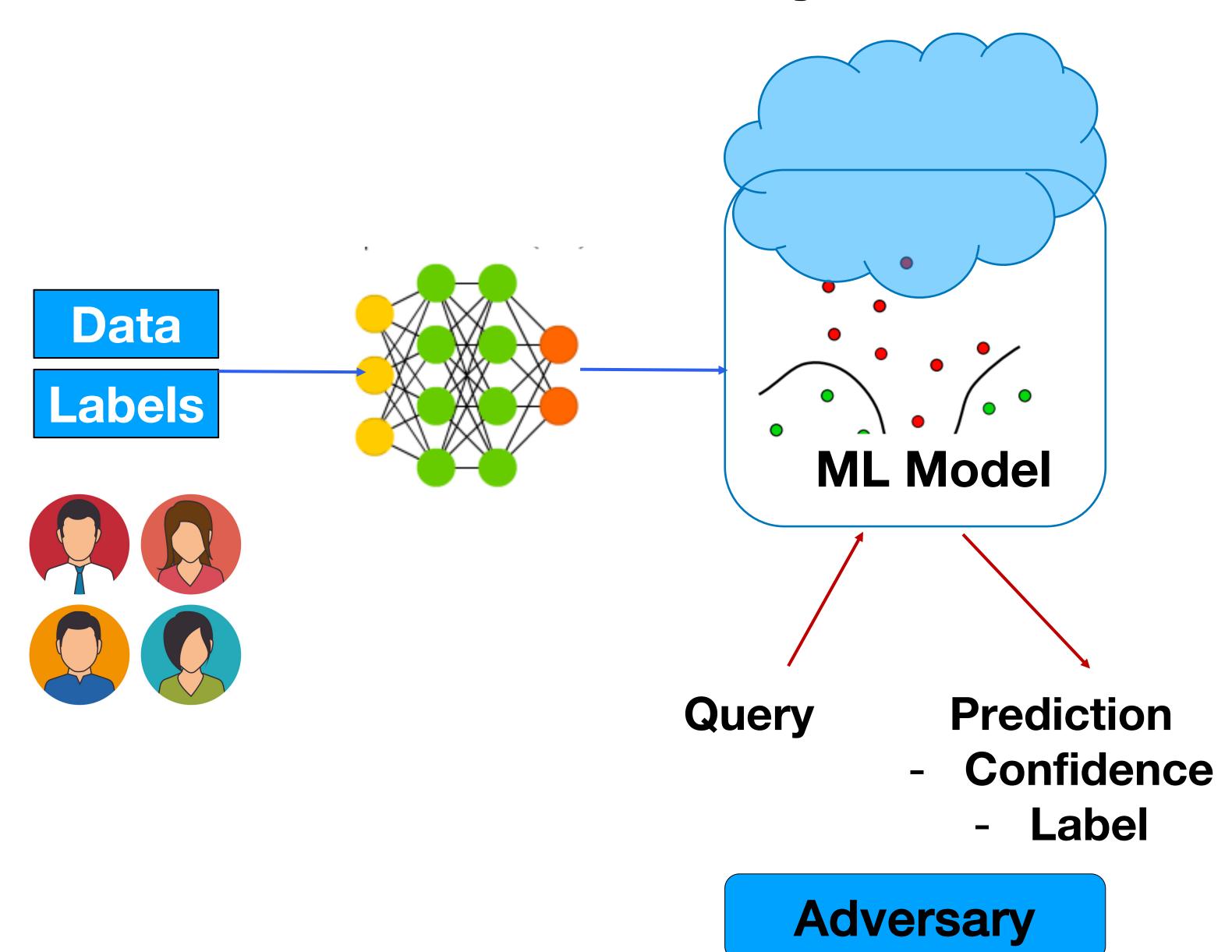
earning Stage

Adversarial Machine Learning: Taxonomy

Attacker's Objective

	Integrity Target small set of points	Availability Target entire model	Privacy Learn sensitive information
Trainin g	Targeted Poisoning Backdoor Poisoning Subpopulation Poisoning	Poisoning Availability Model Poisoning	
Testing	Evasion Attacks	Sponge Adversarial Examples	Reconstruction Membership Inference Model Extraction

Privacy Attacks in ML

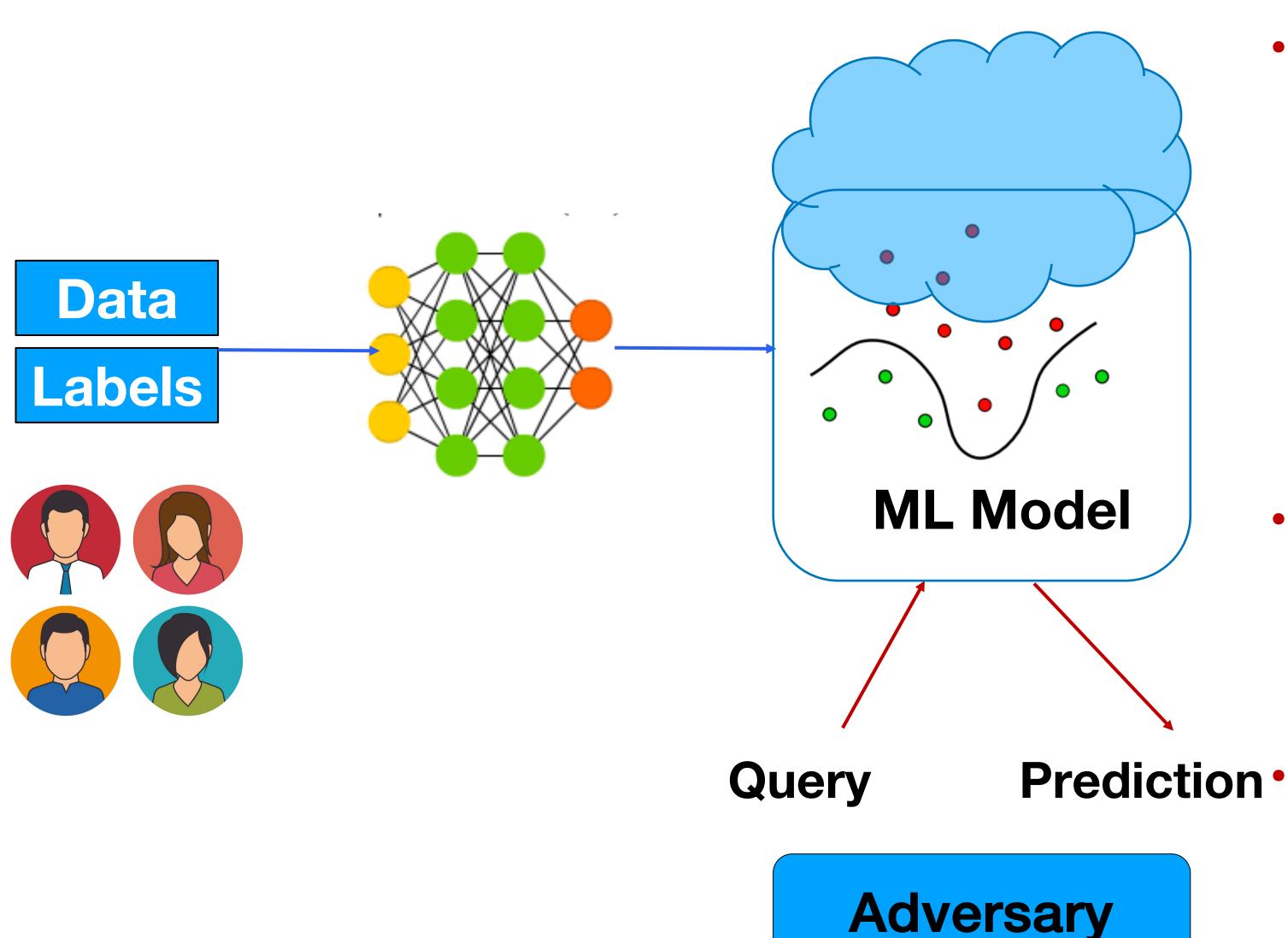


 ML model is trained by third-party collecting user data

Black-box

- Query access to model
- Model returns confidence (probability of prediction) or only predicted label
- What can the adversary learn about the training set?

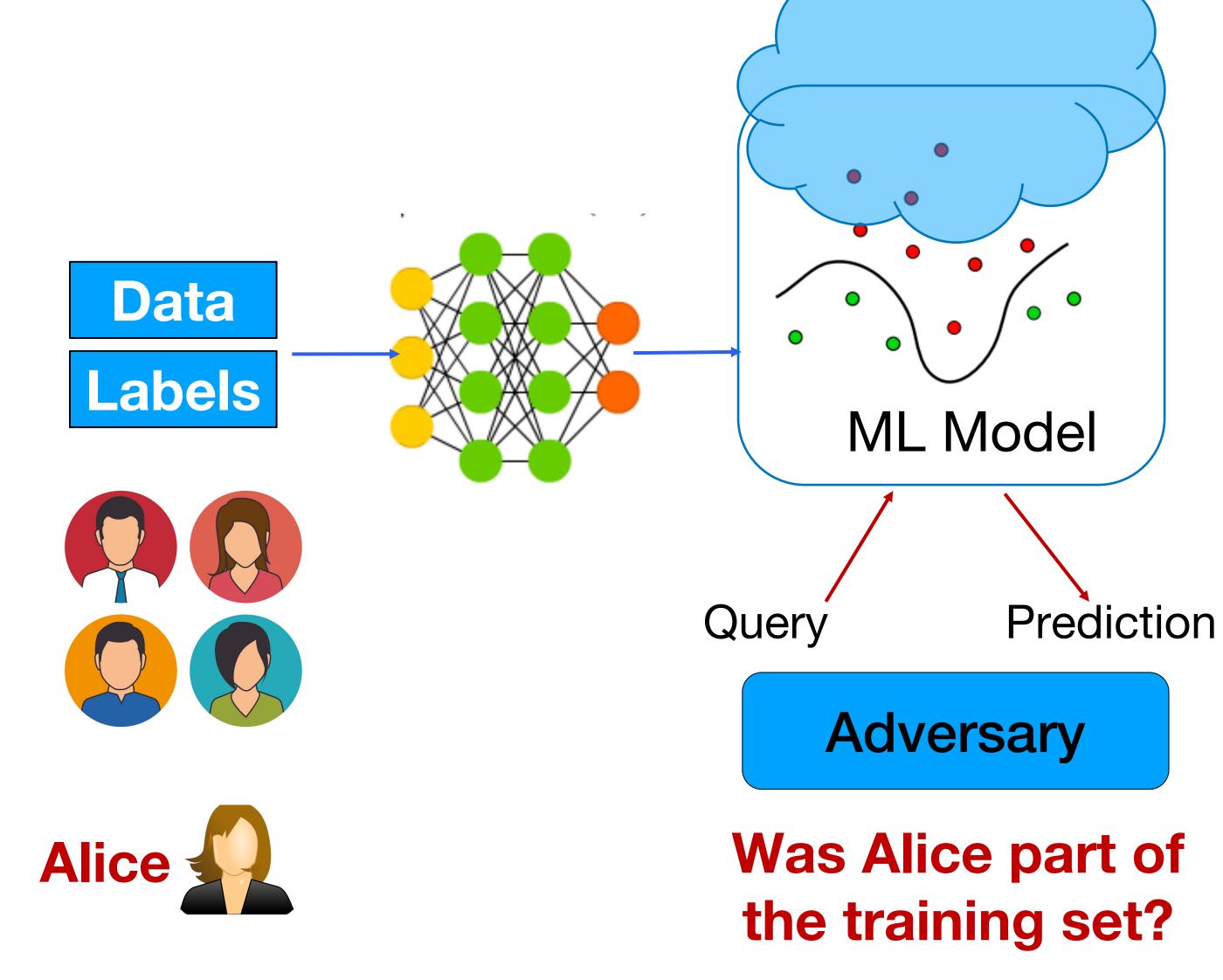
Privacy Attacks in ML



- Reconstruction: Extract sensitive data from training sets
 - Statistical databases: [DN03]
 - DNNs: [HVY22]
 - LLM memorization: [CTW21]
- Membership Inference: Determine if data sample was in training set
 - [SSS17], [YGF18], [CCN22]
 - Property Inference: Learn global properties about the training set
 - [MGC22], [CAO23]

Membership Inference

- Learn if a user participated in training set of model
 - Being part of ML training set might be sensitive
- Introduced for statistical computations on genomic data [HSR08]
- First membership inference attack on DNNs [SSS17]
- More efficient attacks [YGF18],
 [CCN22]



Membership Inference Attacks From First Principles

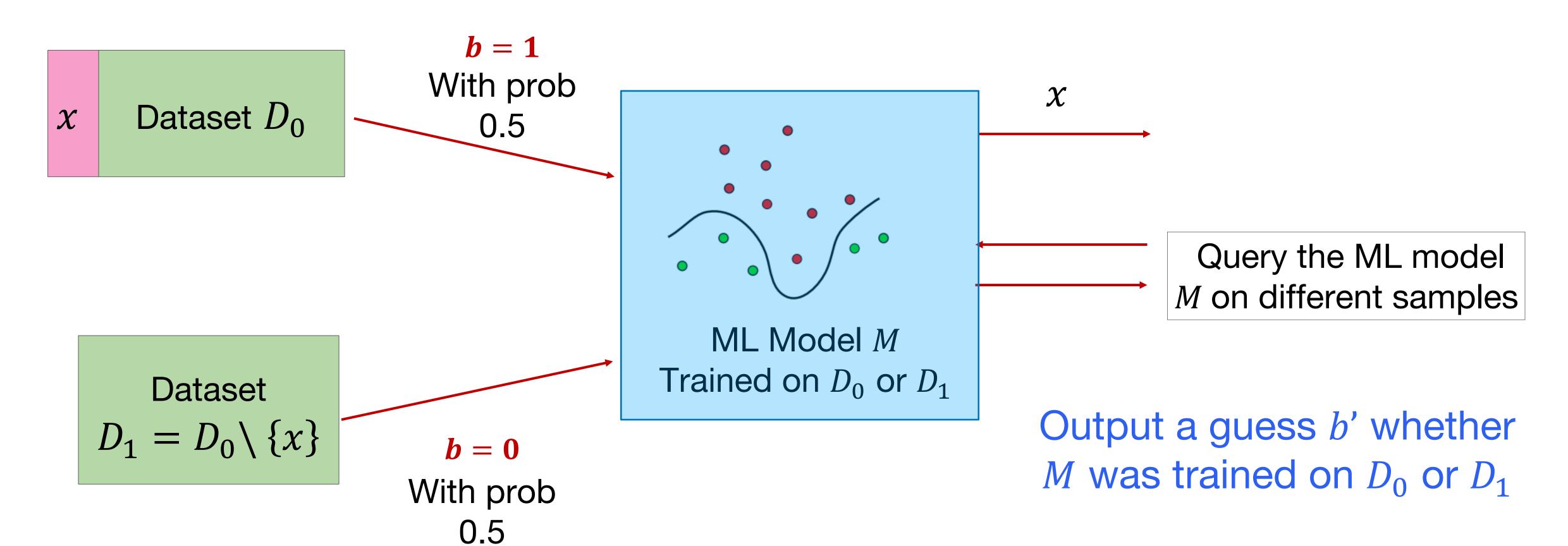
Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, Florian Tramèr

Overview

- Membership Inference (MI) Overview
- Motivating Example for Current Attacks
- Problem with Current Attacks
- Online Likelihood Ratio Attack (LiRA)
- An Offline Variant
- Empirical Results and Practical Considerations

Membership Inference (MI)

Challenger



Adversary

Membership Inference Attacks

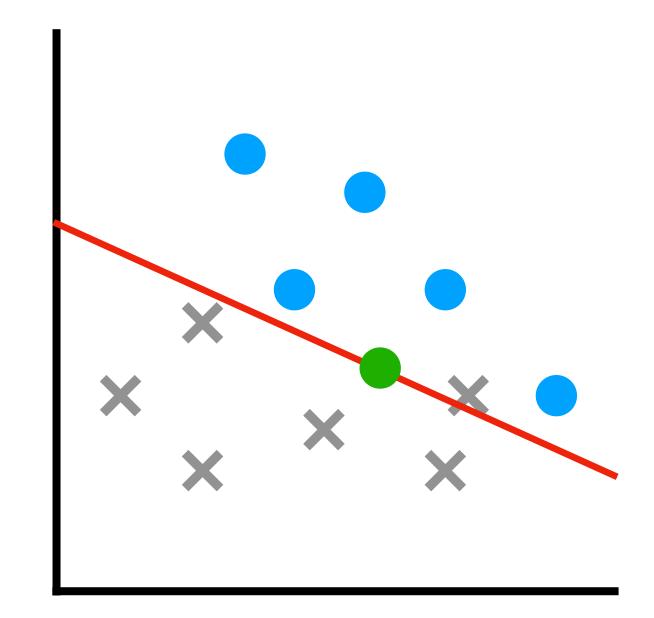
Definition 1 (Membership inference security game). The game proceeds between a challenger C and an adversary A:

- 1) The challenger samples a training dataset $D \leftarrow \mathbb{D}$ and trains a model $f_{\theta} \leftarrow \mathcal{T}(D)$ on the dataset D.
- 2) The challenger flips a bit b, and if b = 0, samples a fresh challenge point from the distribution $(x,y) \leftarrow \mathbb{D}$. Otherwise, the challenger selects a random challenge point from the training set $(x,y) \leftarrow^{\$} D$.
- 3) The challenger sends (x, y) to the adversary.
- 4) The adversary gets query access to the distribution \mathbb{D} , and to the model f_{θ} , and outputs a bit $\hat{b} \leftarrow \mathcal{A}^{\mathbb{D},f}(x,y)$.
- 5) Output 1 if $\hat{b} = b$, and 0 otherwise.

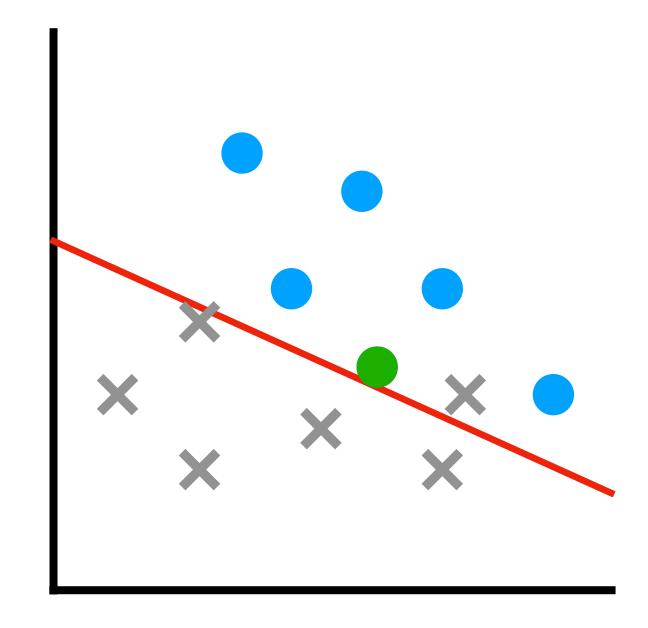
Overview

- Membership Inference (MI) Overview
- Motivating Example for Current Attacks
- Problem with Current Attacks
- Online Likelihood Ratio Attack (LiRA)
- An Offline Variant
- Empirical Results and Practical Considerations

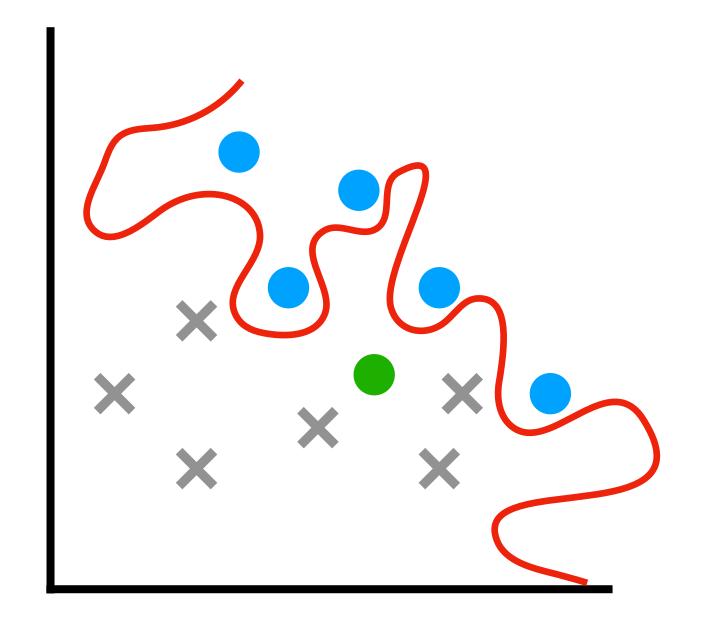
- Suppose we have a predictive model with **low** capacity, \mathcal{M} , which outputs the probability of an individual, x, having a disease ($\mathcal{M}(x) \in [0,1]$)
 - \mathcal{M} is trained on dataset D, and when we make the query $\mathcal{M}_D(Bob)$, the output is 0.55



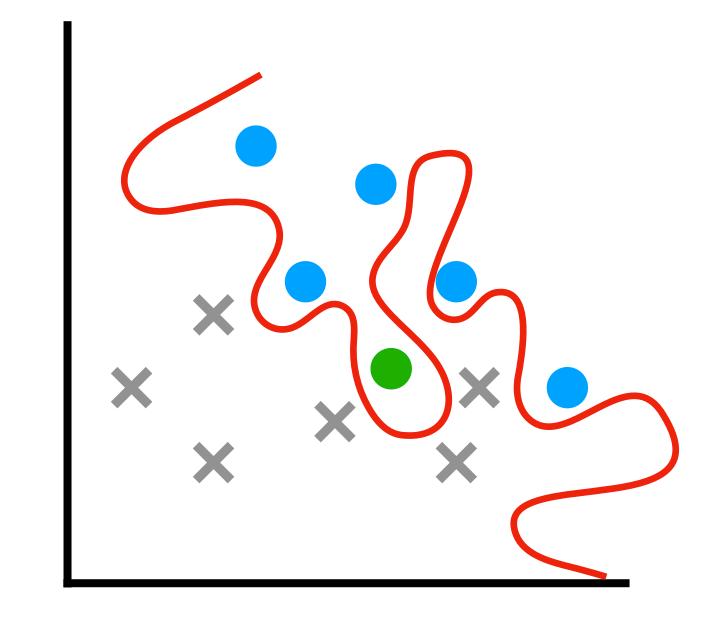
- Suppose we have a predictive model with **low** capacity, \mathcal{M} , which outputs the probability of an individual, x, having a disease ($\mathcal{M}(x) \in [0,1]$)
 - \mathcal{M} is trained on dataset D, and when we make the query $\mathcal{M}_D(Bob)$, the output is 0.55
 - \mathcal{M} is trained on dataset D + Bob, and when we make the query $\mathcal{M}_{D+Bob}(Bob)$, the output is 0.57
 - It is unclear whether Bob has this medical condition



- Suppose we have a predictive model with **high** capacity, \mathcal{M} , which outputs the probability of an individual, x, having a disease $(\mathcal{M}(x) \in [0,1])$
 - \mathcal{M} is trained on dataset D, and when we make the query $\mathcal{M}_D(Bob)$, the output is 0.36

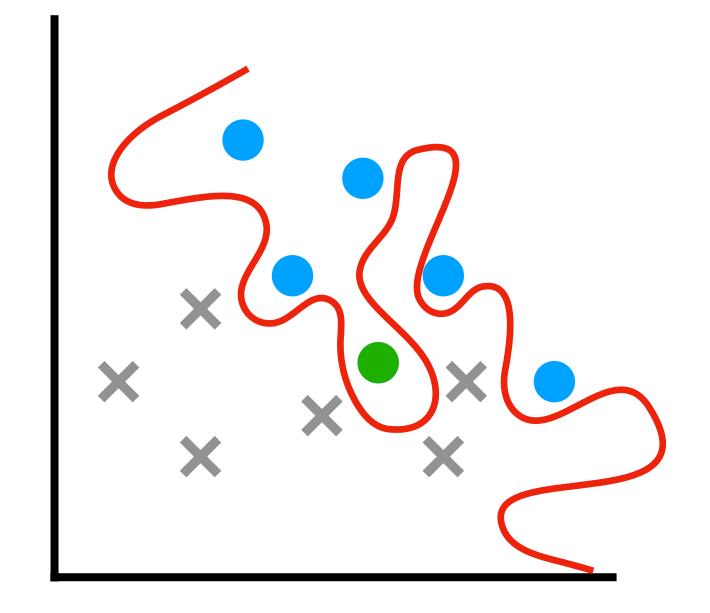


- Suppose we have a predictive model with **high** capacity, \mathcal{M} , which outputs the probability of an individual, x, having a disease $(\mathcal{M}(x) \in [0,1])$
 - \mathcal{M} is trained on dataset D, and when we make the query $\mathcal{M}_D(Bob)$, the output is 0.36
 - \mathcal{M} is trained on dataset D + Bob, and when we make the query $\mathcal{M}_{D+Bob}(Bob)$, the output is 0.70
 - Although we have 70% confidence that Bob has the disease, the drastic change in confidence tells us that Bob definitely has the disease



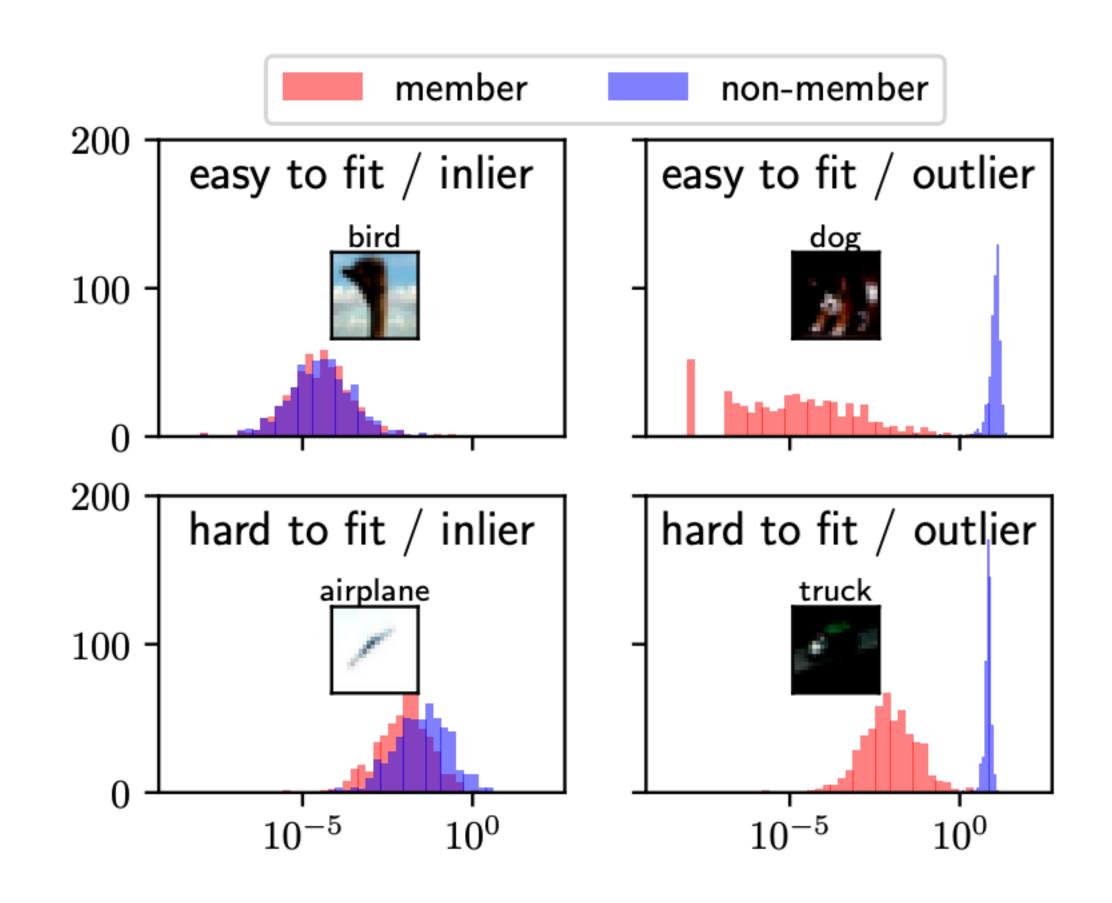
Loss-Based Membership Inference

- We can use the model's confidence (or loss) on a target point as a test statistic [Yeom et al. '18]
- Determine that a point is a member if its loss < T; otherwise the point is non-member
 - Global threshold: average loss of training points



The Problem with Current Attacks

- Prior work evaluates attacks using averagecase success metrics (i.e., accuracy over a dataset)
 - The attacks themselves typically involve computing a single test statistic and thresholding the IN vs. OUT classification [Yeom et al. '18]
- Privacy is not an average case metric
 - Certain examples are "harder" to overfit than others
 - Assuming that confidences are on an equal scale ignores the reality of per-example hardness

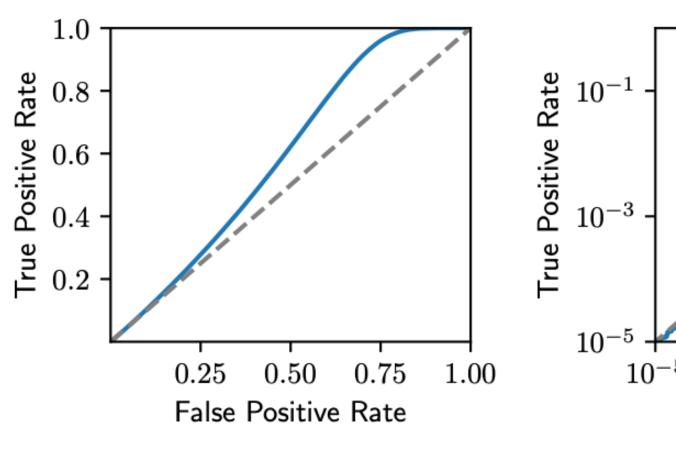


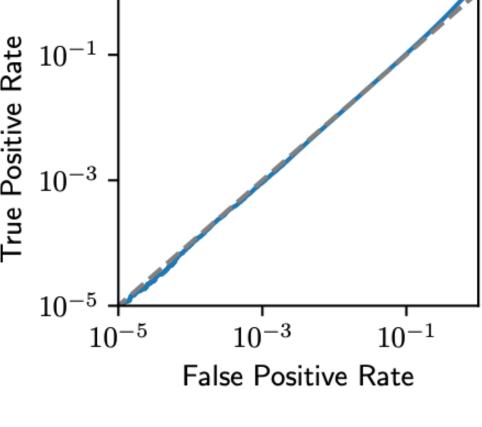
The Problem with Current Attacks

Balanced Accuracy of the LOSS Attack

$$\mathbb{P}_{x,y,f,b}[\mathcal{A}^{\mathbb{D},f}(x,y)=b]$$

- This accuracy is symmetric (Equal cost to FP and FN)
 - Depending on the setting, we might care more about FP or FN
- This accuracy is an average-case metric
 - Attack A perfectly targets 0.1% of the data and guesses on the rest. Attack B succeeds with 50.05% on any given user
 - Both have same accuracy





(b) log scale

Paper' Goals

Main Objectives

- 1. Create an attack that can effectively measure when someone is a member
 - Have a high true positive rate for a fixed false positive rate
- 2. Design the attack in a principled manner

Overview

- Membership Inference (MI) Overview
- Motivating Example for Current Attacks
- Problem with Current Attacks
- Online Likelihood Ratio Attack (LiRA)
- An Offline Variant
- Empirical Results and Practical Considerations

MI as Hypothesis Testing

- MI requires the adversary to distinguish between two worlds
 - IN: The world where the model was trained on the target point
 - OUT: The world where the model wasn't trained on the target point
- Both of these worlds induce distributions over the trained model
 - $\bullet \ \mathbb{Q}_{in}(x,y) = \{ f \leftarrow \mathcal{T}(D \cup \{(x,y)\}) \}$
 - $\mathbb{Q}_{out}(x,y) = \{f \leftarrow \mathcal{T}(D)\}$

MI as Hypothesis Testing

- Given a model f, and a target example (x, y) we want to distinguish between these two distributions
 - We can view this task as a **hypothesis test** between two hypotheses: f was sampled from \mathbb{Q}_{in} or \mathbb{Q}_{out}
- The Neyman-Pearson Lemma states that the best hypothesis test at a fixed FPR is obtained by thresholding the Likelihood-ratio Test between the two hypotheses

$$\Lambda(f; x, y) = \frac{p(f|\mathbb{Q}_{in}(x, y))}{p(f|\mathbb{Q}_{out}(x, y))}$$

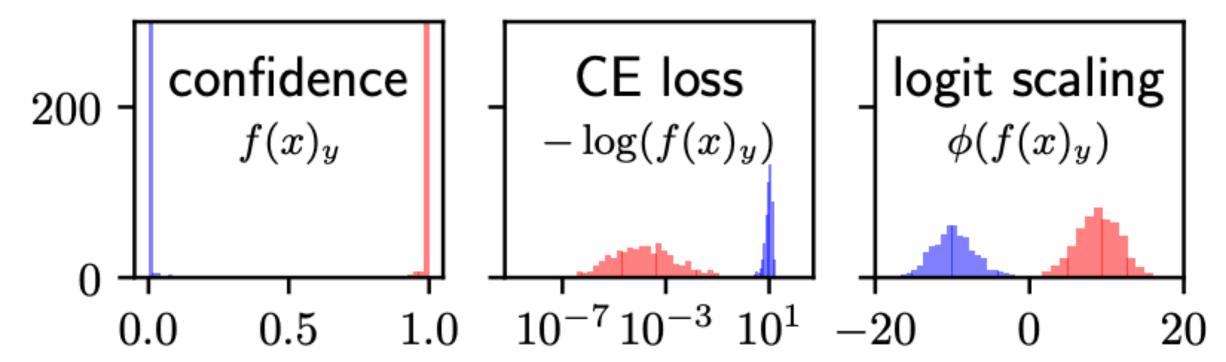
Likelihood Ratio Test

• The exact likelihood ratio is typically intractable since \mathbb{Q}_{in} and \mathbb{Q}_{out} are not analytically known and f is high dimensional and unknown to the adversary

- Instead, we can measure $p(\ell(f(x),y)|\mathbb{Q}_{in/out}(x,y))$ where \mathbb{Q} is the distribution of losses on (x,y) for models trained (IN) or not trained (OUT) on (x,y)
 - We individually model separate pairs of distributions \mathbb{Q}_{in} and \mathbb{Q}_{out} for each example (x,y)

Likelihood Ratio Test

- To improve performance at low FPR, the authors take a parametric approach by approximating the distributions using Gaussians
- Instead of using the loss directly, they use a scaled version of the model's prediction "confidence"
 - First look at the model's confidence $f(x)_y = \exp(-\ell(f(x),y))$ which is in [0,1]
 - Then scale it to obtain a statistic in $(-\infty, \infty)$ using $\phi(p) = \log(\frac{p}{1-p})$



Likelihood Ratio Attack (LiRA) Strategy

- 1. Assume we have black-box access to some model f, a target example (x,y), and access to the underlying distribution, \mathbb{D} , where f 's training set was drawn from
- 2. Train several shadow models on datasets (sampled from \mathbb{D}) with and without (x,y) to mimic the worlds where (x,y) is \mathbb{N} and \mathbb{OUT}
- 3. Aggregate the shadow models' prediction scores on (x, y) and compute sample mean/variance
- Compare these Gaussians to the target model's scaled confidence by using the likelihood ratio test

Online LiRA Algorithm

```
Require: model f, example (x, y), data distribution \mathbb{D}
  1: confs_{in} = \{\}
  2: confs_{out} = \{\}
  3: for N times do
  4: D_{\text{attack}} \leftarrow^{\$} \mathbb{D}
  5: f_{\text{in}} \leftarrow \mathcal{T}(D_{\text{attack}} \cup \{(x,y)\}) \triangleright train IN model
  6: \operatorname{confs_{in}} \leftarrow \operatorname{confs_{in}} \cup \{\phi(f_{in}(x)_y)\}
  7: f_{\text{out}} \leftarrow \mathcal{T}(D_{\text{attack}}) \triangleright train OUT model
        confs_{out} \leftarrow confs_{out} \cup \{\phi(f_{out}(x)_y)\}\
  9: end for
 10: \mu_{in} \leftarrow \text{mean}(\text{confs}_{in})
11: \mu_{\text{out}} \leftarrow \text{mean}(\text{confs}_{\text{out}})
12: \sigma_{\rm in}^2 \leftarrow {\rm var}({\rm confs_{in}})
13: \sigma_{\text{out}}^2 \leftarrow \text{var}(\text{confs}_{\text{out}})
14: \operatorname{conf}_{\operatorname{obs}} = \phi(f(x)_y)
                                                                                     > query target model
15: return \Lambda = \frac{p(\text{conf}_{\text{obs}} \mid \mathcal{N}(\mu_{\text{in}}, \sigma_{\text{in}}^2))}{p(\text{conf}_{\text{obs}} \mid \mathcal{N}(\mu_{\text{out}}, \sigma_{\text{out}}^2))}
```

Overview

- Membership Inference (MI) Overview
- Motivating Example for Current Attacks
- Problem with Current Attacks
- Online Likelihood Ratio Attack (LiRA)
- An Offline Variant
- Empirical Results and Practical Considerations

Motivation for an Offline Variant

- The online variant of LiRA has a significant usability limitation
 - We need to train 2N new machine learning models for every set of membership inference queries
 - Assumes the queries are known in advance
 - Doing this is very computationally expensive
- The authors provide an offline variant of the attack that uses a one-sided hypothesis test

Offline Attack Algorithm

- This attack trains the shadow models on randomly sampled datasets ahead of time and never trains the shadow models on the target points
- Same as LiRA but remove lines 5, 6, 10, and $_{\tilde{r}}^{-}$ 12 (the steps where we would consider \mathbb{Q}_{in})
- Lastly, line 15 becomes a one-sided hypothesis test
 - Measure probability of observing a confidence as high as the target model's under the null-hypothesis: (x, y) is OUT

```
Require: model f, example (x, y), data distribution \mathbb{D}
  1: confs_{in} = \{\}
  2: confs_{out} = \{\}
  3: for N times do
        D_{\mathrm{attack}} \leftarrow^{\$} \mathbb{D}
        f : \mathcal{T}(D) \cup \{(\infty, 9)\}
                                                                                  ▶ train IN model
  7: f_{\text{out}} \leftarrow \mathcal{T}(D_{\text{attack}})
                                                                              ▶ train OUT model
       confs_{out} \leftarrow confs_{out} \cup \{\phi(f_{out}(x)_y)\}\
  9: end for
 10: pm (confo<sub>m</sub>)
11: \mu_{\text{out}} \leftarrow \text{mean}(\text{confs}_{\text{out}})
13: \sigma_{\text{out}}^2 \leftarrow \text{var}(\text{confs}_{\text{out}})
14: \operatorname{conf}_{\operatorname{obs}} = \phi(f(x)_y)

▷ query target model

15: return \Lambda = \frac{p(\text{conf}_{\text{obs}} \mid \mathcal{N}(\mu_{\text{in}}, \sigma_{\text{in}}^2))}{p(\text{conf}_{\text{obs}} \mid \mathcal{N}(\mu_{\text{out}}, \sigma_{\text{out}}^2))}
                      \Lambda = 1 - \mathbb{P}[Z > \phi(f(x)_y)], Z \sim \mathcal{N}(\mu_{out}, \sigma_{out}^2)
```

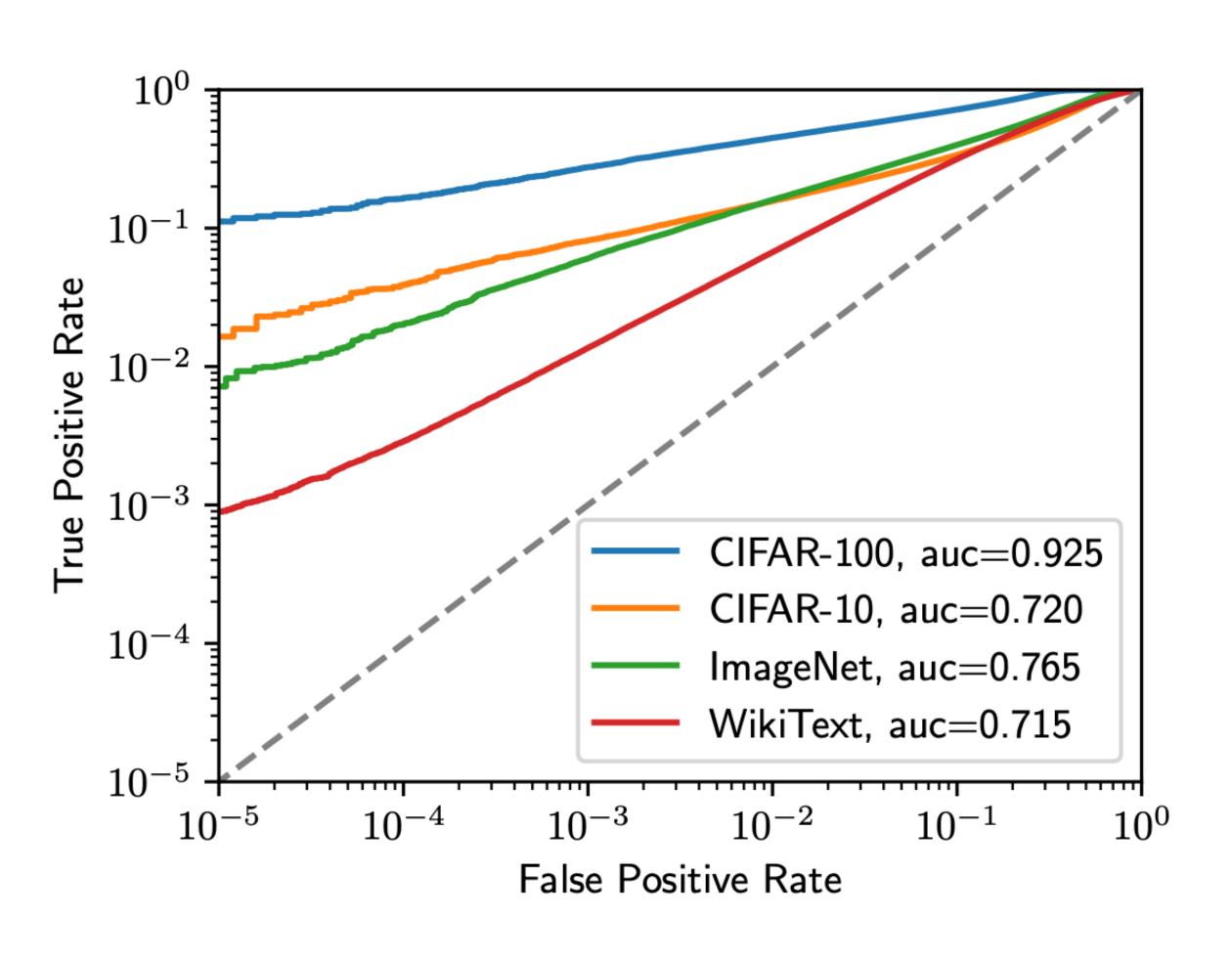
Overview

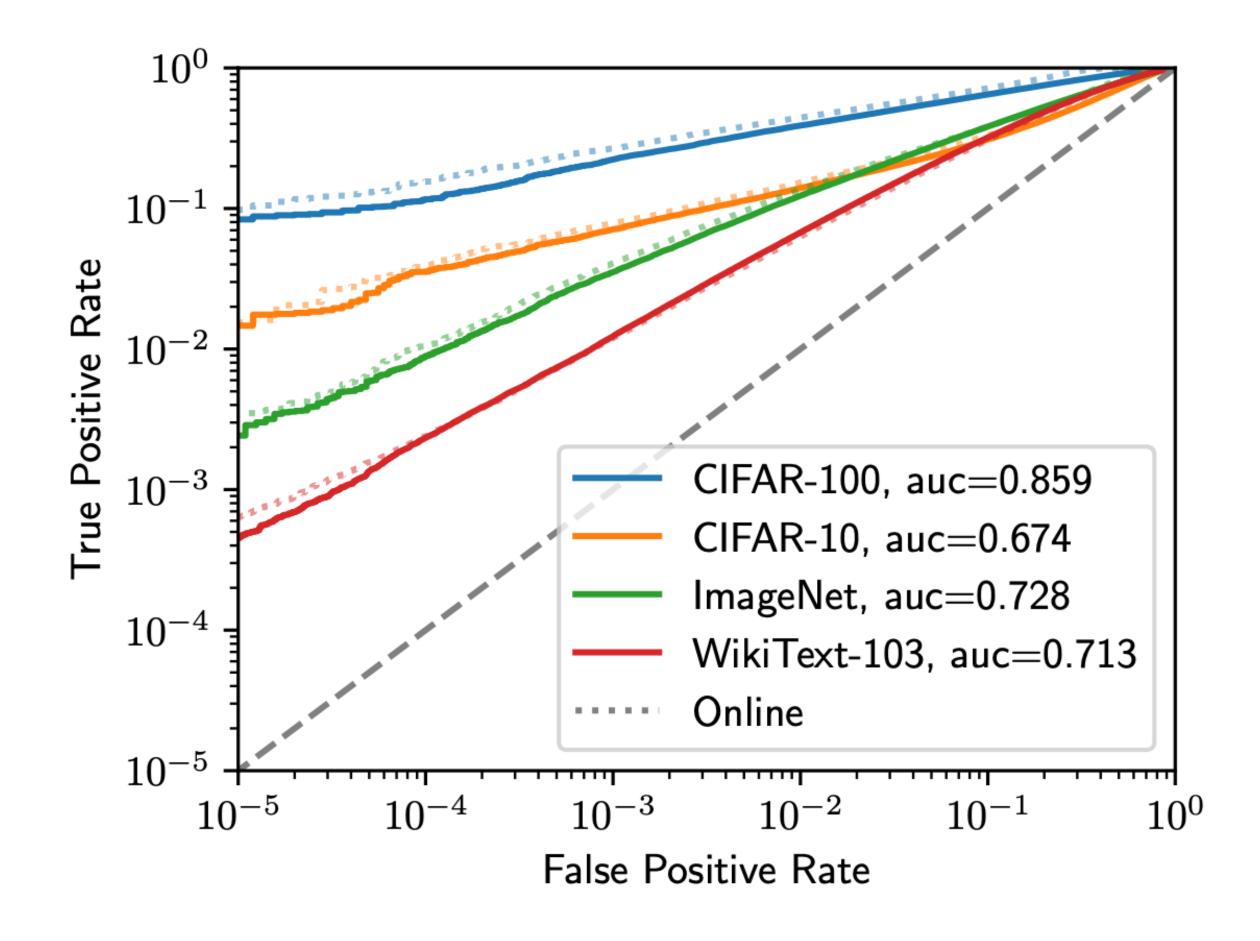
- Membership Inference (MI) Overview
- Motivating Example for Current Attacks
- Problem with Current Attacks
- Online Likelihood Ratio Attack (LiRA)
- An Offline Variant
- Empirical Results and Practical Considerations

Attack Evaluation (TPR/FPR)

- The authors evaluate the attacks' TPR and FPR over several complex model architectures and datasets
 - Models: ResNet(18, 34, 50), DenseNet121, MobileNetV2, etc.
 - Datasets: CIFAR-10, CIFAR-100, ImageNet, etc.
- Depending on the dataset and model architecture, the number of shadow models the authors trained differs
 - ImageNet: **N** = **64**, CIFAR-10: **N** = **256**

Attack Evaluation (TPR/FPR)





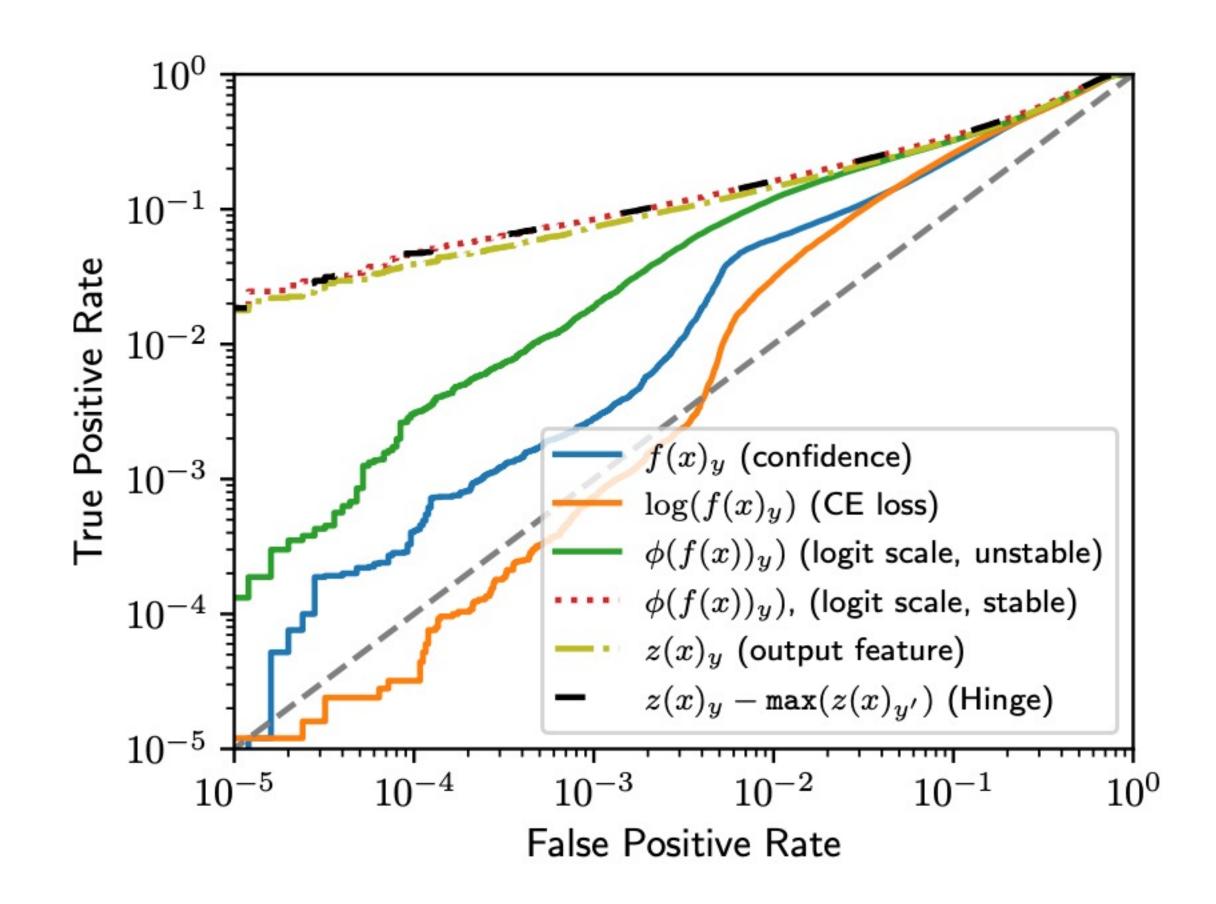
Online Attack

Offline Attack

Attack Evaluation (Stable Scaling)

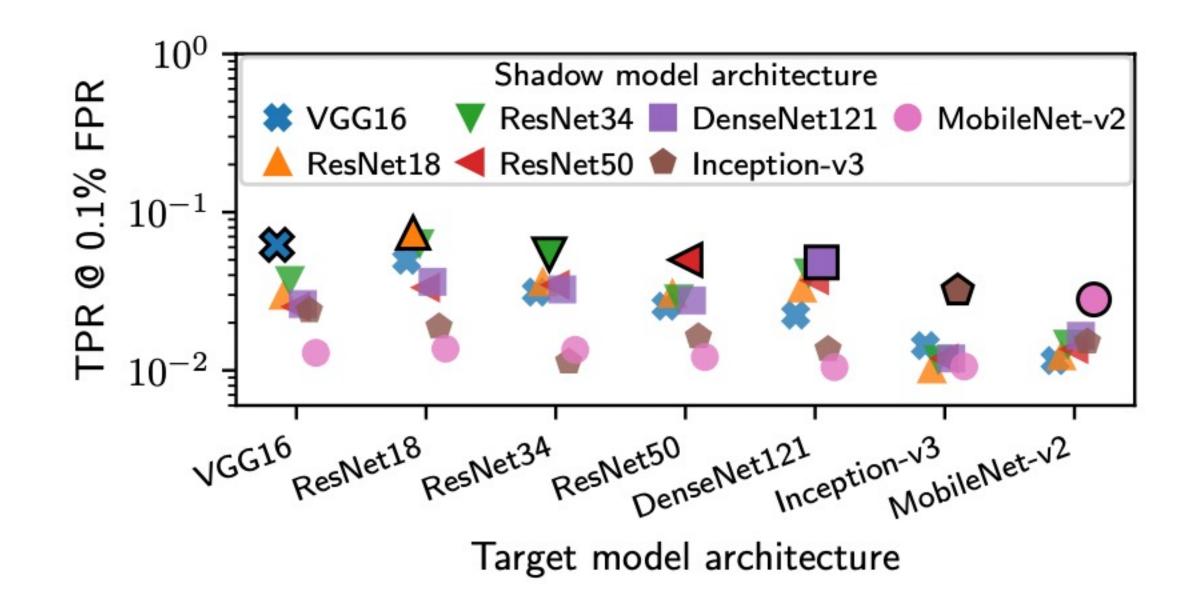
- The authors found the original logit scaling $\phi(p) = \log(\frac{p}{1-p})$ to be unstable in practice
- Instead, we see an increase in attack success when using a stable variant

$$\phi_{stable} = \log(\frac{f(x)_y}{\sum_{y'\neq y} f(x)_{y'}})$$



Attack Evaluation (Architectures)

- The attack succeeds against state-of-the-art CIFAR-10 models
 - The degree to which the attack succeeds depends on the shadow model architecture
- Empirically, the attack performs best when the shadow models have the same architecture as the target model



Attack Success vs Model Accuracy

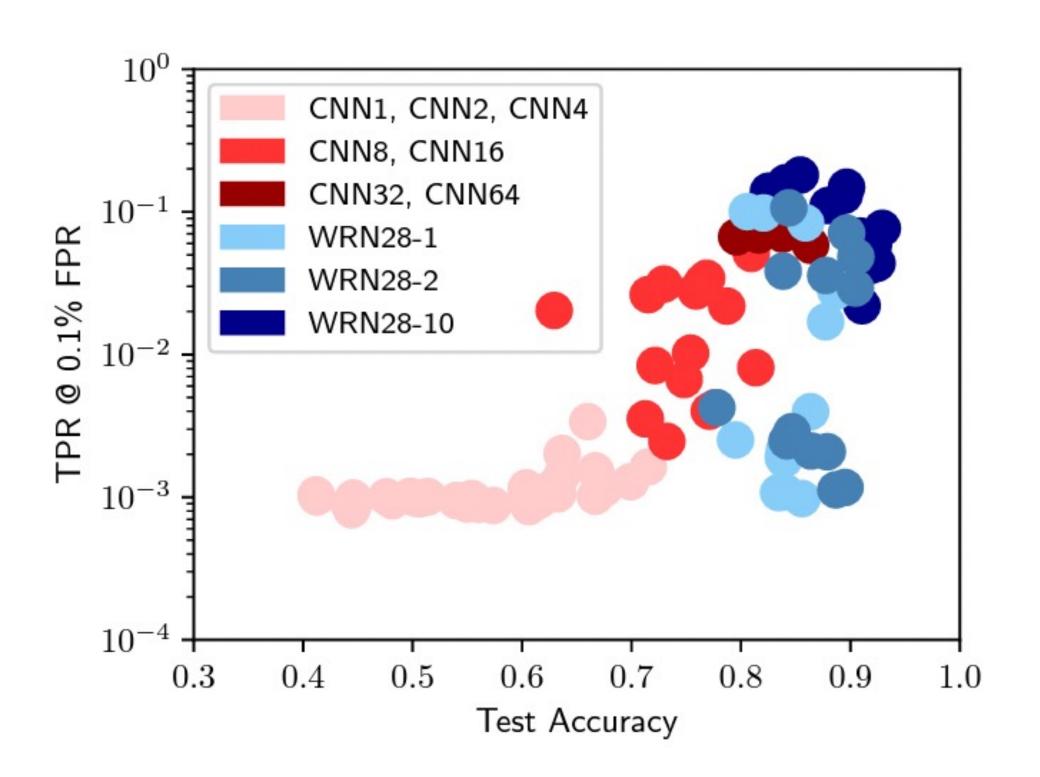
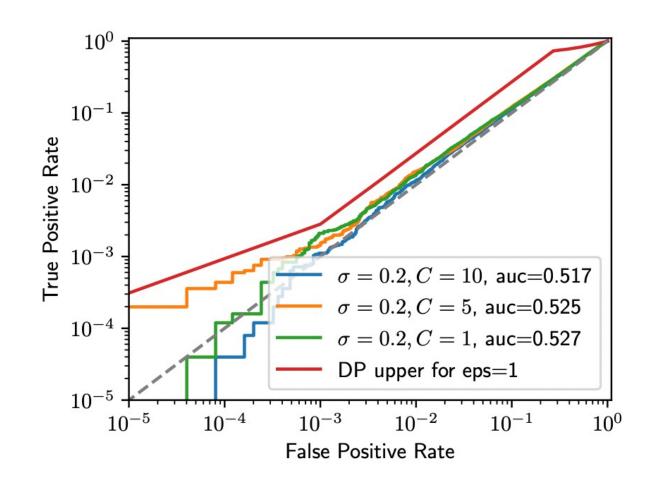
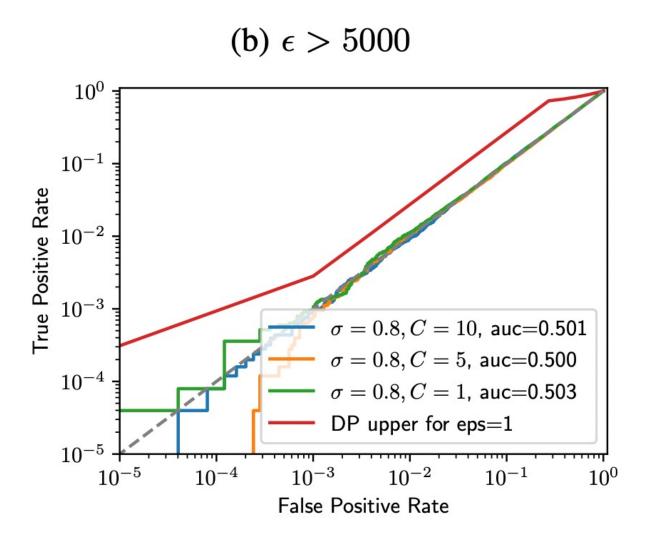


Fig. 16: Attack true-positive rate versus model test accuracy.

Attack Evaluation (DP-SGD)

- Differentially Private SGD is the main defense mechanism against MI attacks on machine learning models
 - DP gives an upper bound on the success of any MI attack
- Even when little noise is added, small clipping norms significantly reduces the performance of the attack





(c)
$$\epsilon = 8$$

Strengths

- Introduced new metrics for evaluating MI attack success
- Viewing membership inference as a hypothesis test between IN and OUT loss distributions can achieve much better true positive rates than prior work
- Several new ideas: learn per-sample thresholds, fit Gaussians to logit distribution
- Good attack performance
- Comprehensive experiments

Limitations

- The attack comes with a sizable computational overhead
- Some of the assumptions might not be true
 - There are no statistical tests performed to determine if the logits are Gaussians
- Why white-box attack does not perform better?