#### CS 7775

Seminar in Computer Security:

Machine Learning Security and

Privacy

Fall 2023

Alina Oprea
Associate Professor
Khoury College of Computer Science

**November 20 2023** 

# Learning Stage

## Adversarial Machine Learning: Taxonomy

#### Attacker's Objective

|          | Integrity Target small set of points                          | Availability Target entire model          | Privacy Learn sensitive information                                     |
|----------|---------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|
| Training | Targeted Poisoning Backdoor Poisoning Subpopulation Poisoning | Poisoning Availability<br>Model Poisoning | -                                                                       |
| Testing  | Evasion Attacks                                               | Sponge Adversarial<br>Examples            | Reconstruction Membership Inference Model Extraction Property Inference |

## Pang et al. On the Security Risks of AutoML. USENIX Security 2023

## Background

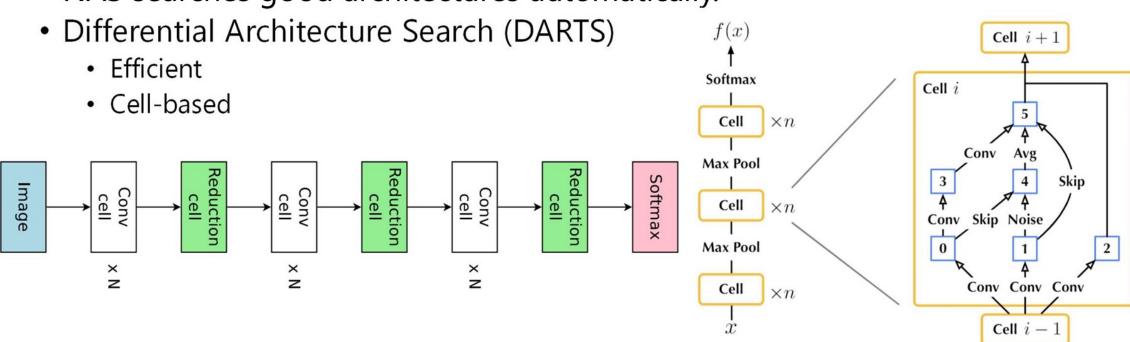
- Automated Machine Learning (AutoML)
  - Auto Data Augmentation
  - Hyperparameter Optimization
  - Neural Architecture Search (NAS)
  - etc.





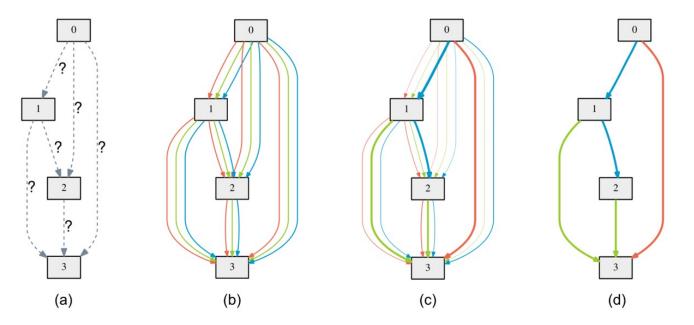
## Background

- Neural Architecture Search (NAS)
  - NAS searches good architectures automatically.



- Architecture is a stack of cells
- Each cell is a DAG with multiple operations (learned)

#### **DARTS**



$$x^{(j)} = \sum_{i < j} o^{(i,j)}(x^{(i)})$$

$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$

#### Bilevel optimization

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
s.t. 
$$w^*(\alpha) = \operatorname{argmin}_{w} \quad \mathcal{L}_{train}(w, \alpha)$$

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint optimization of the mixing probabilities and the network weights by solving a bilevel optimization problem. (d) Inducing the final architecture from the learned mixing probabilities.

- Introduce continuous weights on edges  $\alpha$
- Operation on edge has maximum weight

Optimize jointly for architecture and parameters

#### **DARTS**

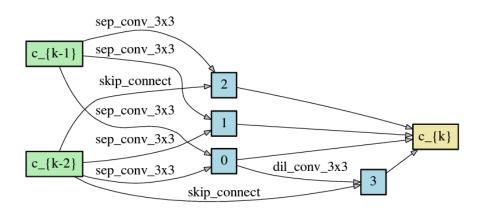


Figure 4: Normal cell learned on CIFAR-10.

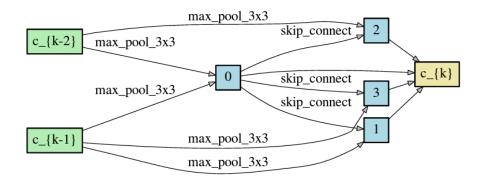


Figure 5: Reduction cell learned on CIFAR-10.

#### **Problem Statement**

- Is AutoML susceptible to various adversarial attacks at training and testing time?
- How do AutoML architectures compare to manual architectures in terms of robustness?
- How to increase robustness?

#### **Threat Model**

- Evasion attacks
  - White-box: PGD

$$\min_{\delta \in \mathcal{B}_{\varepsilon}} \ell(f(x+\delta),t)$$

- Poisoning availability
  - Maximize model loss

$$\max \mathbb{E}_{(x,y) \sim \mathcal{D}_{tst}} \ell(f_{\theta^*}(x), y)$$
s.t.  $\theta^* = \arg \min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}_{trn} \cup \mathcal{D}_{pos}} \ell(f_{\theta}(x), y)$ 

Backdoor poisoning

$$\min_{r \in \mathcal{R}_{\mathsf{x}}, \theta} \mathbb{E}_{(x, y) \sim \mathcal{D}_{trn}} [\ell(f_{\theta}(x), y) + \lambda \ell(f_{\theta}(x + r), t)]$$

- Functionality stealing
- Membership inference MI: confidence or label-only

## Datasets / Models

| Architecture        |                   | CIFAR10 | CIFAR100 | ImageNet32 |
|---------------------|-------------------|---------|----------|------------|
| Manual Architecture | BiT [32]          | 96.6%   | 80.6%    | 72.1%      |
|                     | DenseNet [28]     | 96.7%   | 80.7%    | 73.6%      |
|                     | DLA [60]          | 96.5%   | 78.0%    | 70.8%      |
|                     | ResNet [26]       | 96.6%   | 79.9%    | 67.1%      |
|                     | ResNext [57]      | 96.7%   | 80.4%    | 67.4%      |
|                     | VGG [52]          | 95.1%   | 73.9%    | 62.3%      |
|                     | WideResNet [61]   | 96.8%   | 81.0%    | 73.9%      |
| NAS Architecture    | AmoebaNet [47]    | 96.9%   | 78.4%    | 74.8%      |
|                     | DARTS [39]        | 97.0%   | 81.7%    | 76.6%      |
|                     | <i>DrNAS</i> [11] | 96.9%   | 80.4%    | 75.6%      |
|                     | ENAS [46]         | 96.8%   | 79.1%    | 74.0%      |
|                     | NASNet [64]       | 97.0%   | 78.8%    | 73.0%      |
|                     | PC-DARTS [59]     | 96.9%   | 77.4%    | 74.7%      |
|                     | PDARTS [12]       | 97.1%   | 81.0%    | 75.8%      |
|                     | SGAS [35]         | 97.2%   | 81.2%    | 76.8%      |
|                     | SNAS [58]         | 96.9%   | 79.9%    | 75.5%      |
|                     | Random [17]       | 96.7%   | 78.6%    | 72.2%      |

#### **Evasion Results**

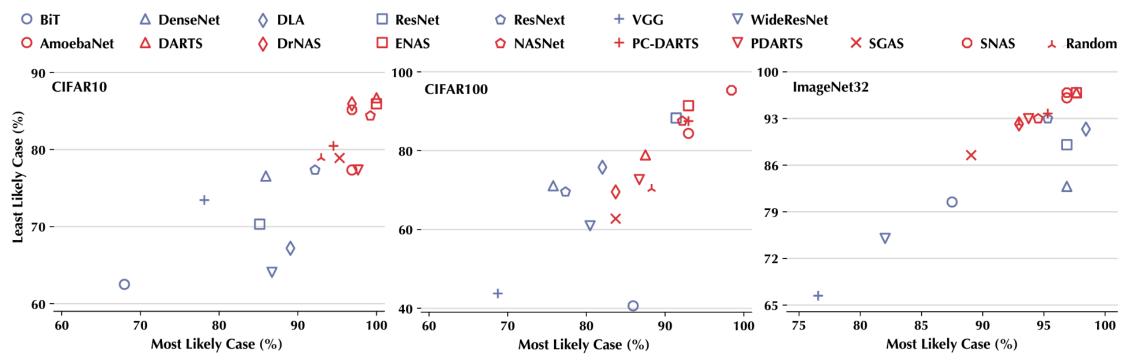


Figure 2: Performance of adversarial evasion (PGD) against NAS and manual models under the least and most likely settings.

#### **Evasion Results**

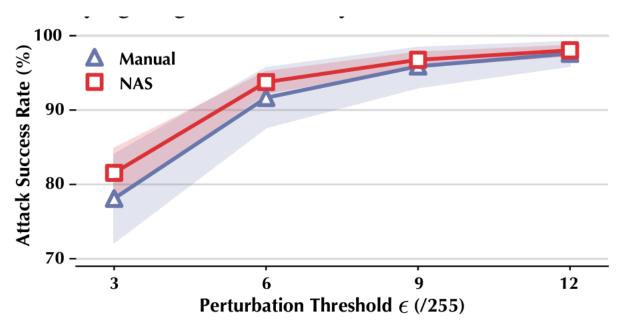


Figure 3: Impact of perturbation threshold ( $\epsilon$ ) on the vulnerability of different models with respect to PGD on CIFAR10.

## **Poisoning Results**

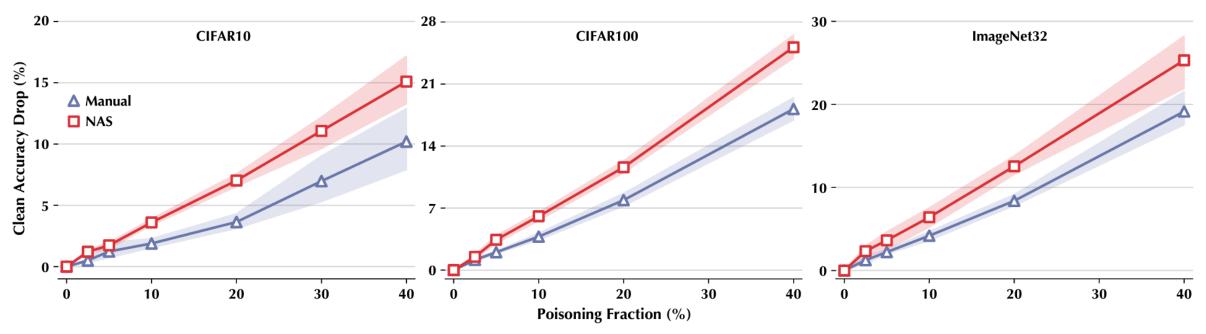
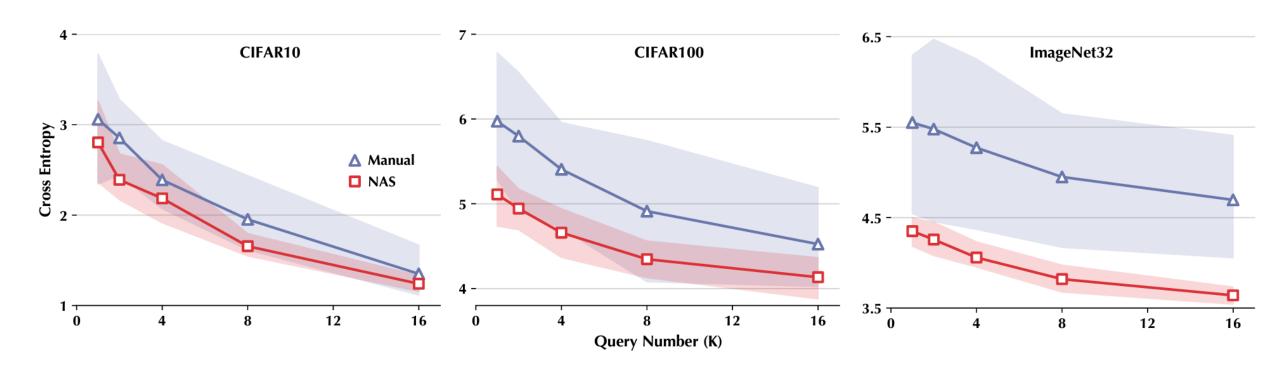


Figure 6: Performance of model poisoning against NAS and manually designed models under varying poisoning fraction  $p_{pos}$ .

## **Functionality Stealing**



## Label-Only Membership Inference

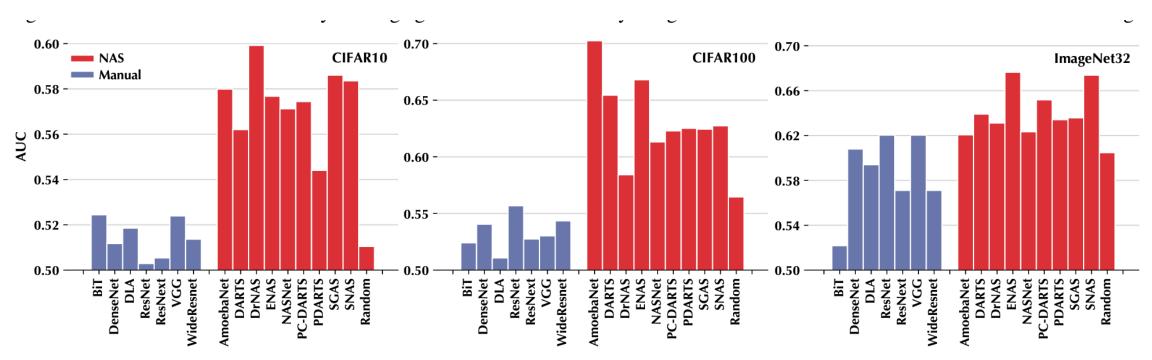


Figure 10: Performance of label-only membership inference attacks against NAS and manually designed models.

## Why Higher Vulnerability?

#### Hypotheses

**High loss smoothness** – The loss landscape of NAS models tends to be smooth, while the gradient provides effective guidance for optimization. Therefore, NAS models are amenable to training using simple, first-order optimizers.

**Low gradient variance** – The gradient of NAS models with respect to the given distribution tends to have low variance. Therefore, the stochastic gradient serves as a reliable estimate of the true gradient, making NAS models converge fast.

#### Loss Smoothness

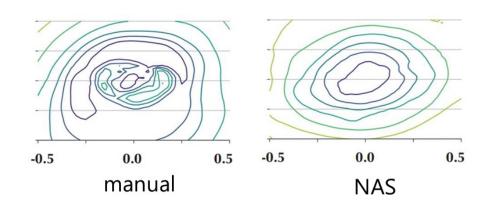
**Loss smoothness** – A loss function  $\mathcal{L}$  is said to have L-Lipschitz (L > 0) continuous gradient with respect to  $\theta$  if it satisfies  $\|\nabla \mathcal{L}(\theta) - \nabla \mathcal{L}(\theta')\| \le L\|\theta - \theta'\|$  for any  $\theta, \theta'$ . The constant L controls  $\mathcal{L}$ 's smoothness. While it is difficult to directly measure L of given model f, we explore its loss contour [22], which quantifies the impact of parameter perturbation on  $\mathcal{L}$ . Specifically, we measure the loss contour of model f as follows:

$$\Gamma(\alpha, \beta) = \mathcal{L}(\theta^* + \alpha d_1 + \beta d_2) \tag{12}$$

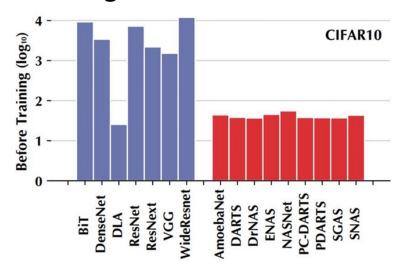
where  $\theta^*$  denotes the local optimum,  $d_1$  and  $d_2$  are two random, orthogonal directions as the axes, and  $\alpha$  and  $\beta$  represent the perturbation steps along  $d_1$  and  $d_1$ , respectively. Notably, the loss contour effectively approximates the loss landscape in a two-dimensional space [36].

## **Analysis**

- NAS algorithms prefer architectures that converge fast.
  - Shallow models
  - More skip connects
- ⇒ NAS model characteristics:
  - High Loss Smoothness (small Lipschitz constant)



Low gradient variance



Conclusion: More accurate gradients lead to higher vulnerability to attacks based on gradients (evasion, poisoning, stealing, MI)

### Li et al. Visualizing the Loss Landscape of Neural Nets

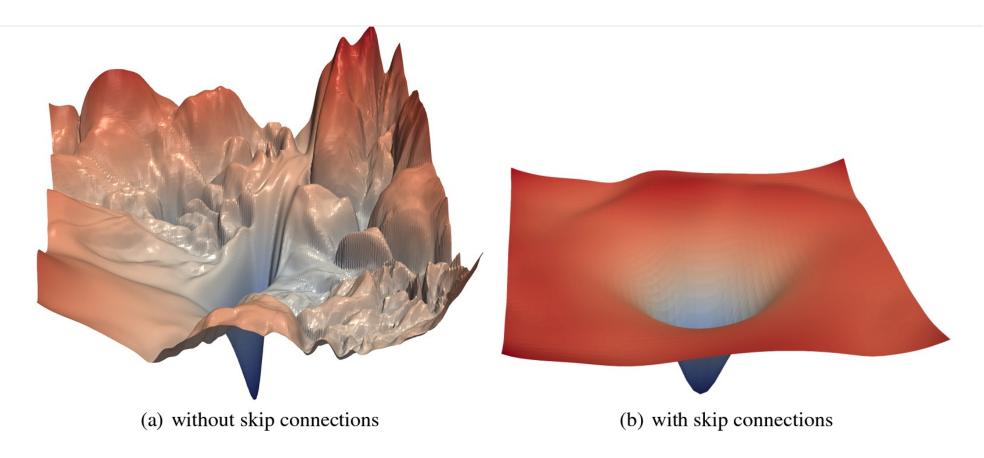
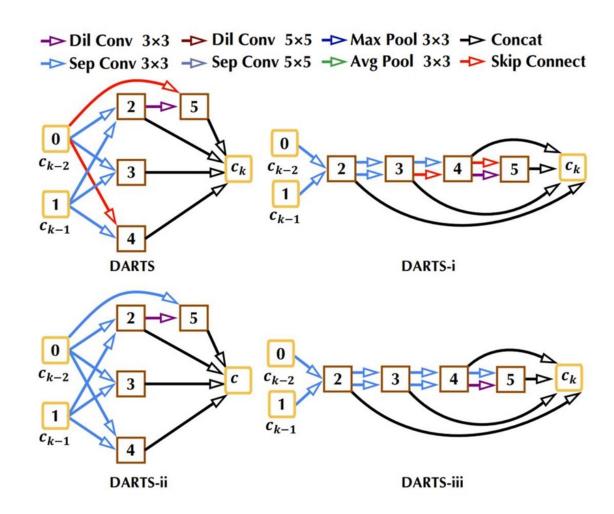


Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

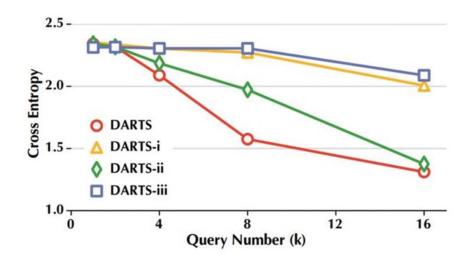
## Mitigations

- To suppress those characteristics,
  - (i) increase cell depth
  - (ii) reduce skip connects
  - (iii) combined of (i) and (ii)

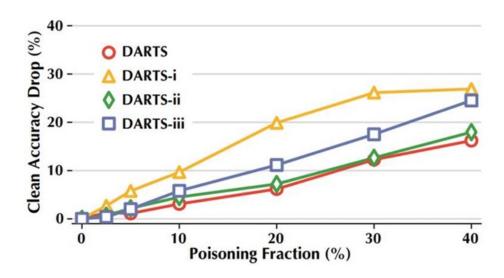


## Mitigation Evaluation

#### Functional Stealing



#### Model Poisoning



### Summary

#### Strengths

- Evaluated 5 different types of attacks
- Considered 9 AutoML methods and compared against well-known baseline architectures on 3 datasets
- Analysis of loss smoothness and gradient variance is interesting
- Limitations
  - Mitigations are not effective for all attacks
  - Security of AutoML deserves further investigation
    - Add robustness objectives during training
- Acknowledgement to the paper authors for their slides