CS 7775

Seminar in Computer Security:

Machine Learning Security and

Privacy

Fall 2023

Alina Oprea
Associate Professor
Khoury College of Computer Science

November 16 2023

Learning Stage

Adversarial Machine Learning: Taxonomy

Attacker's Objective

	Integrity Target small set of points	Availability Target entire model	Privacy Learn sensitive information
Training	Targeted Poisoning Backdoor Poisoning Subpopulation Poisoning	Poisoning Availability Model Poisoning	-
Testing	Evasion Attacks	Sponge Adversarial Examples	Reconstruction Membership Inference Model Extraction Property Inference

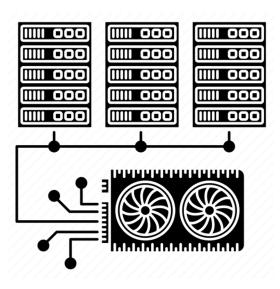
Pan et al. ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning Paradigms. USENIX Security 2023

Problem Statement

- Backdoor attacks are applicable beyond supervised learning
 - Self-supervised learning (SSL)
 - Transfer learning (TL)
- Evaluate existing defenses and show limitations
- Design new defenses for all 3 scenarios: supervised learning,
 SSL, and transfer learning
 - Focus on detection methods (Data Sanitization): Identify poisoned samples at training time and remove them from training

Supervised Learning

End-to-end Supervised Learning

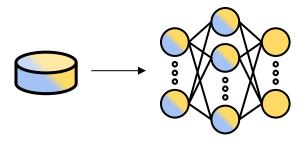


Computational overhead

Other Learning Paradigms

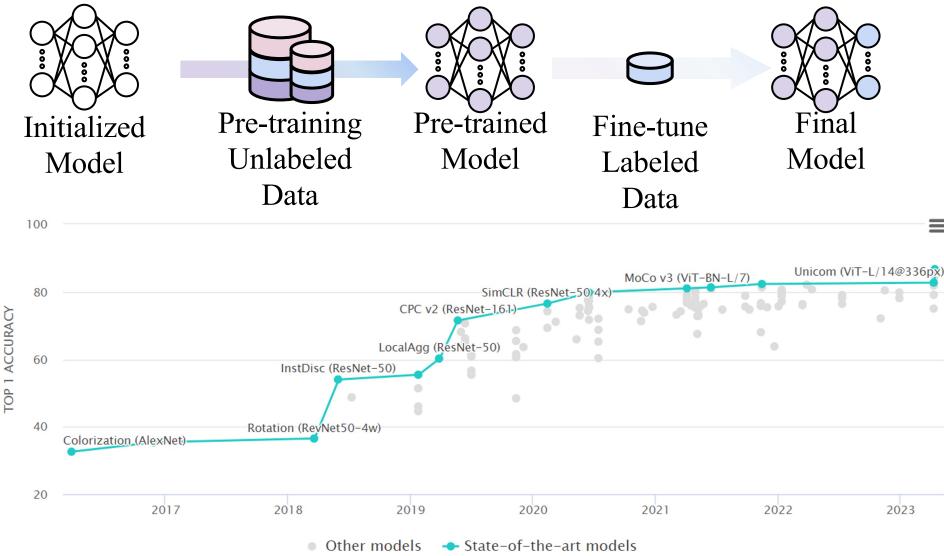
End-to-end Supervised Learning

Self-supervised learning



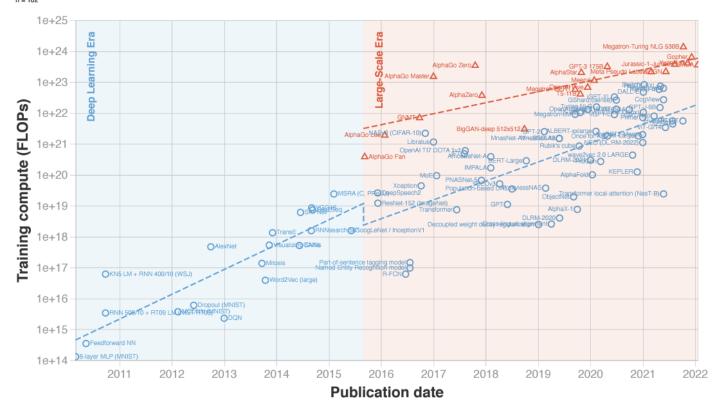
Fine Tuning

Self-Supervised Learning (SSL)

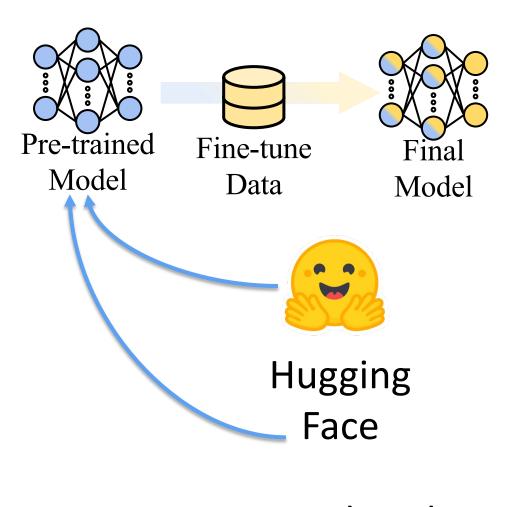


Transfer Learning/Fine-tuning

Training compute (FLOPs) of milestone Machine Learning systems over time



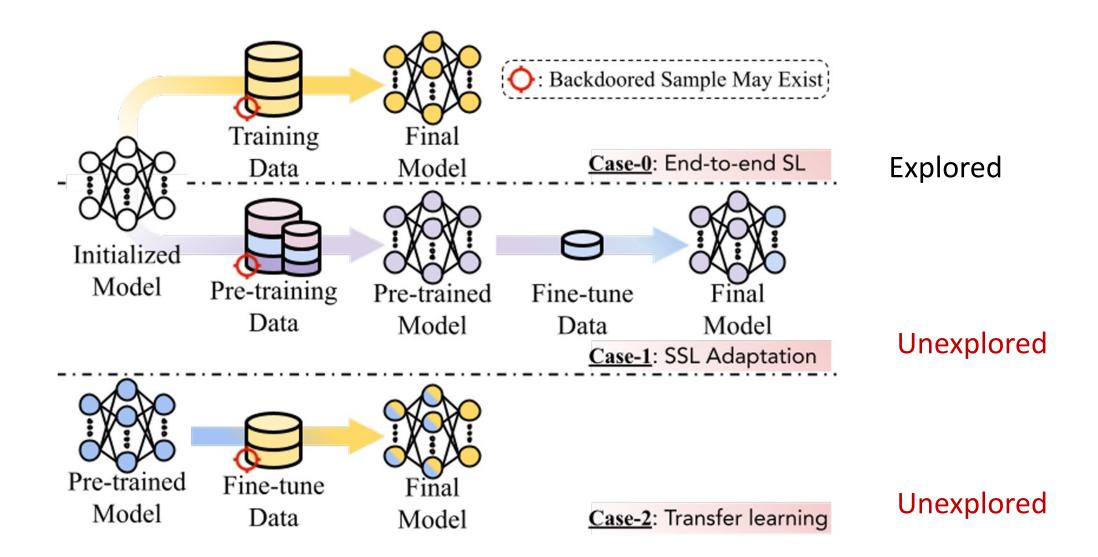
Sevilla, Jaime, et al. "Compute trends across three eras of machine learning." 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022.



PyTorch Hub

•••••

Backdoors are everywhere!



Lack of defense methods!

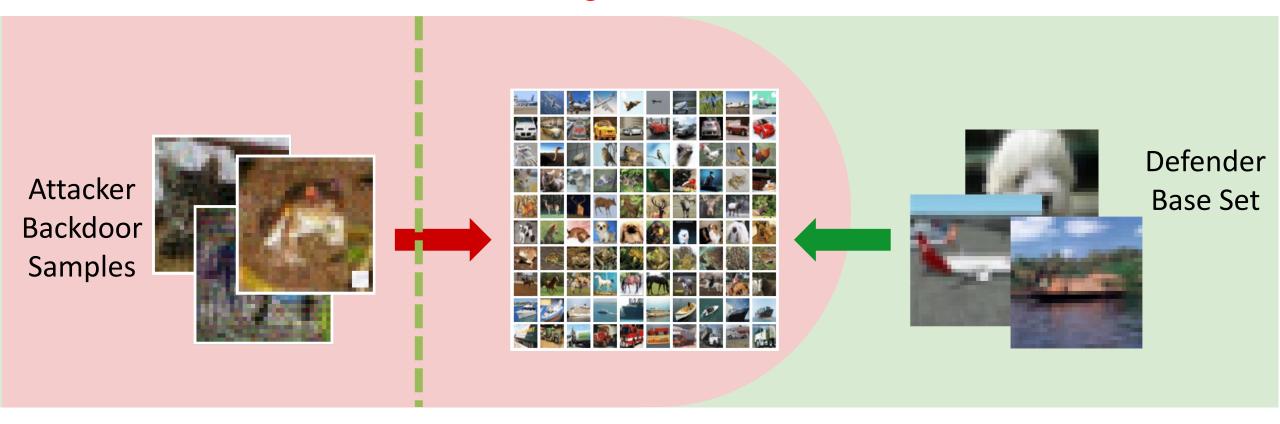
	Spectral	Spectre	Beatrix	AC	Strip	СТ	ASSET
Applicable to Labeled Data	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\odot
Applicable to unlabeled Data	0	0	0	0	0	\bigotimes	\bigcirc
Robust to Different Triggers	\otimes	\otimes	\otimes	\otimes	\otimes	\otimes	\odot
Robust to Different Poison Ratios	\bigotimes	\otimes	\otimes	\otimes	\otimes	\otimes	\bigcirc

Existing defense methods for Supervised Learning

- Analyze difference between clean and poisoned samples in embedding space
 - Clustering samples in embedding space: Activation Clustering (AC)
 - SVD decomposition: Spectral signatures
 - Robust statistics: Spectre
 - Usually require a large poisoning percentage
- Analyze model output under perturbations: Strip
- Use a clean base set
 - Fine tune the model on a clean dataset (Neural Trojans)
 - Add a clean dataset with random labels to training to induce variance in clean samples, while poisoned samples have consistent labeling: Confusion Training (CT)
 - Does not work for clean-label attacks

Threat model

Poisoned Training Dataset



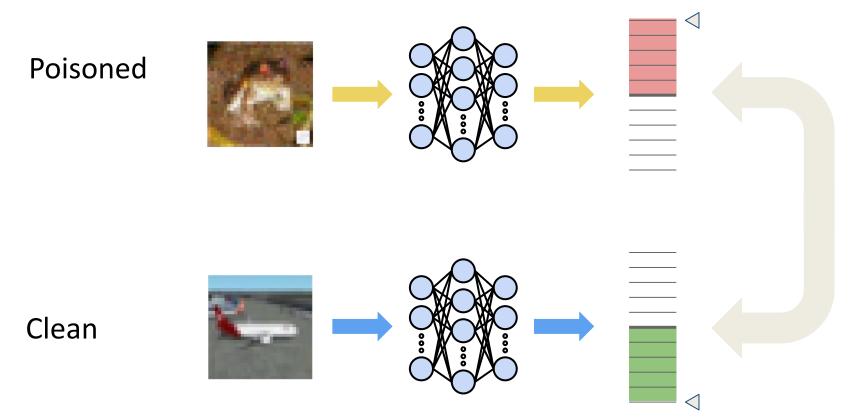
Training Dataset

Identify Poisoned Samples

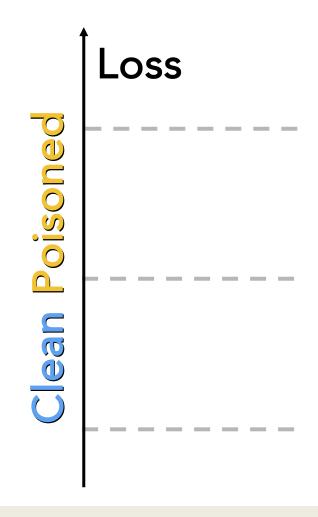
Threat model

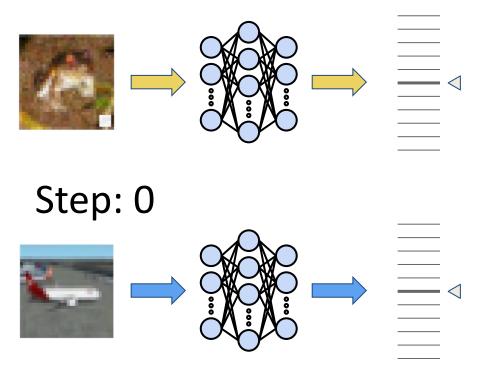
- Defender has access to clean dataset
 - Small (on the order of 1000 samples), much smaller than training set
 - Clean dataset is not labeled
- Attacker can mount a variety of backdoor attacks
 - Dirty label and clean label
 - Defense is attack-agnostic
- Comparison to prior work
 - Strip, Beatrix, and CT assume clean dataset, but it is labeled (they only handle supervised learning) and usually larger

Different model output behaviors between clean and poisoned samples.



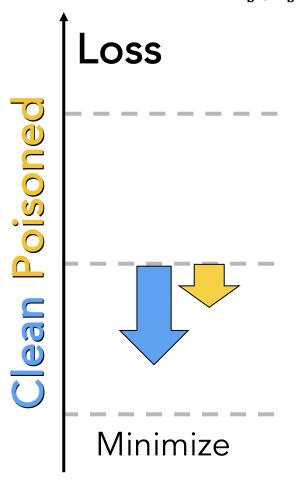
Different loss behaviors!

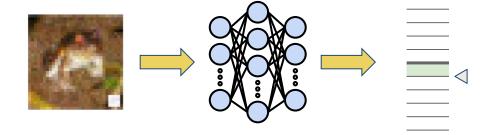


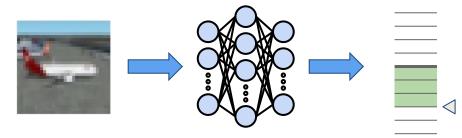


Base set sample

$$heta^* \in rg \min_{ heta} rac{1}{|D_{
m b}|} \sum_{x_{
m b} \in D_{
m b}} \mathcal{L}_{
m min}(f(\underline{x_{
m b}} \mid heta))$$



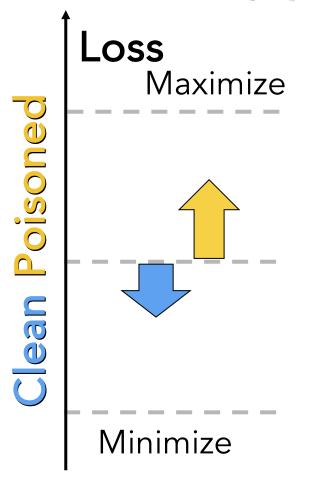


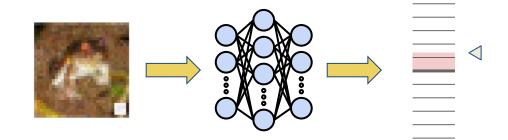


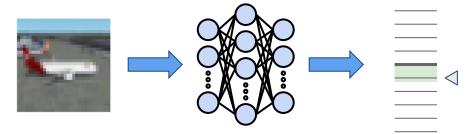
Base set sample

Poison training set sample

$$heta^* \in rg \min_{ heta} rac{1}{|D_{
m b}|} \sum_{x_{
m b} \in D_{
m b}} \mathcal{L}_{
m min}(f(oxed{x_{
m b}} \mid heta)) - rac{1}{|D_{
m poi}\>|} \sum_{x_{
m poi} \in D_{
m poi}} \mathcal{L}_{
m max}(f(oxed{x_{
m poi}} \mid heta))$$



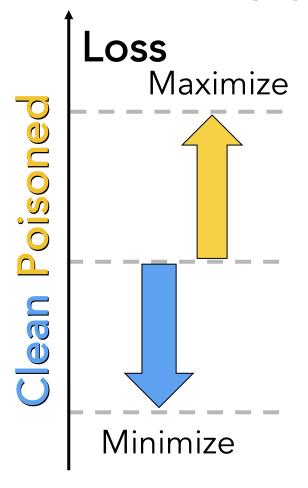


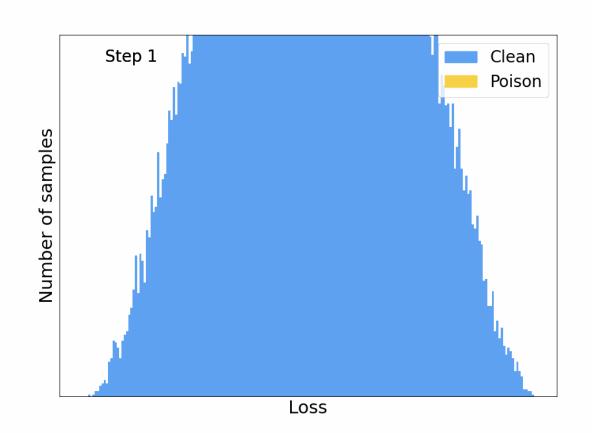


Base set sample

Poison training set sample

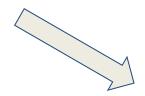
$$heta^* \in rg \min_{ heta} rac{1}{|D_{
m b}|} \sum_{x_{
m b} \in D_{
m b}} \mathcal{L}_{
m min}(f(\underbrace{x_{
m b}} \mid heta)) - rac{1}{|D_{
m poi} \mid} \sum_{x_{
m poi} \in D_{
m poi}} \mathcal{L}_{
m max}(f(\underbrace{x_{
m poi}} \mid heta))$$

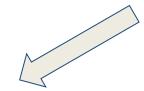




Loss Function: Labeled / Unlabeled Data

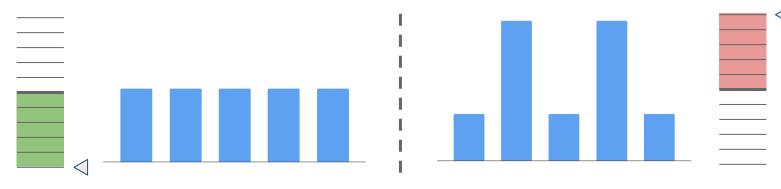
$$heta^* \in rg\min_{ heta} rac{1}{|D_{
m b}|} \sum_{x_{
m b} \in D_{
m b}} \mathcal{L}_{
m min}(f(x_{
m b} \mid heta)) - rac{1}{|D_{
m poi} \mid} \sum_{x_{
m poi} \in D_{
m poi}} \mathcal{L}_{
m max}(f(x_{
m poi} \mid heta))$$

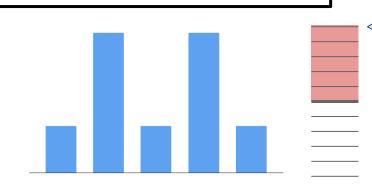




Variance Loss

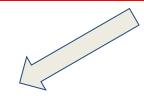
$$\mathcal{L}_{ ext{var}}(f(x \mid heta)) = rac{1}{k} \sum_{i=0}^k \left(f(x \mid heta)_i - \overline{f(x \mid heta)}
ight)^2 \, .$$





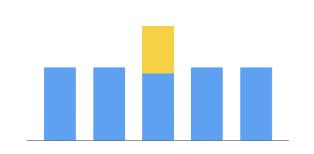
Loss Function: Labeled Data

$$heta^* \in rg \min_{ heta} rac{1}{|D_{
m b}|} \sum_{x_{
m b} \in D_{
m b}} \mathcal{L}_{
m min}(f(x_{
m b} \mid heta)) - rac{1}{|D_{
m poi} \mid} \sum_{x_{
m poi} \in D_{
m poi}} \mathcal{L}_{
m max}(f(x_{
m poi} \mid heta))$$



CE Loss
$$\mathcal{L}_{ ext{ce}}(f(x \mid heta), y) = -\sum_{i=1}^k y_i \log \sigma(f(x \mid heta))_i$$

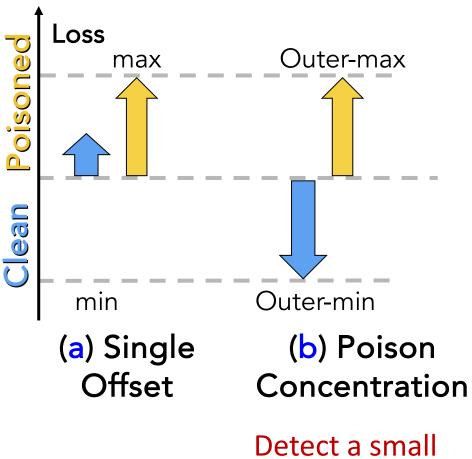
Variance Loss



CE Loss

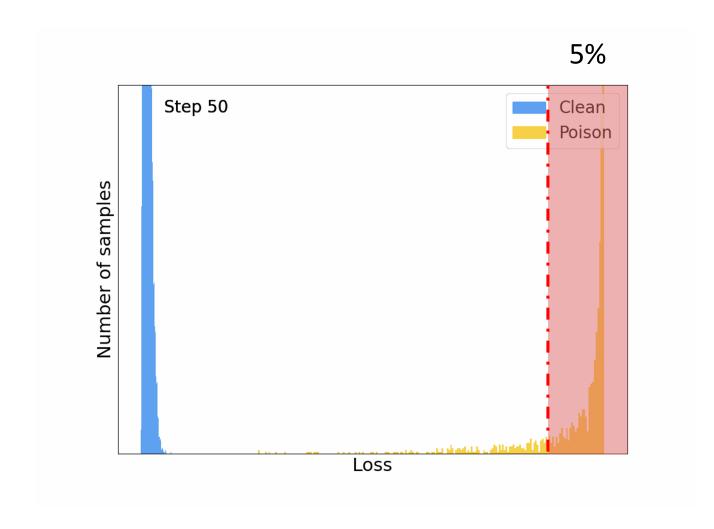
Algorithm 2: ASSET Backdoor Detection

```
Input: \theta_0 (Initialized detector);
                 \theta_{\text{poi}}^* (Poisoned feature extractor);
                D_{\text{poi}} (Poisoned training set);
                D_{\rm b} (Base set);
    Output: S_{poi} (Indexes of the detected poisoned samples);
    Parameters: I (Total outer loop iteration number);
                            \alpha > 0 (Step size);
1 for each iteration i in (0, I-1) do
           /* 1. Obtaining mini-batches */
          B_{\text{poi}}^i \leftarrow B_{\text{poi}}^i \in D_{\text{poi}};
2
          \overline{B_{\mathsf{b}}^i} \leftarrow B_{\mathsf{b}}^i \in D_{\mathsf{b}};
           /* 2. Minimization */
          \theta' = \leftarrow \theta_i - \alpha \frac{1}{|B_b^i|} \sum_{x_b^i \in B_b^i} \frac{\partial \mathcal{L}_{\text{var}} \left( f(x_b^i | \theta_i) \right)}{\partial \theta_i};
5
           /* 4. Maximization */
         \theta_{i+1} \leftarrow \theta_i' + \alpha \frac{1}{B_{pc}^i} \sum_{x_{pc}^i \in B_{pc}^i} \frac{\partial \mathcal{L}_{max}(f(x_{pc}^i | \theta'))}{\partial \theta'};
        5.Get output loss values */
7 V \leftarrow \mathcal{L}_{\max} (f(D_{poi}|\theta_I));
   /* 6.Detection result via adaptive GMM */
8 S_{\text{poi}} \leftarrow \text{adaptive GMM}(V);
9 return S_{poi}
```

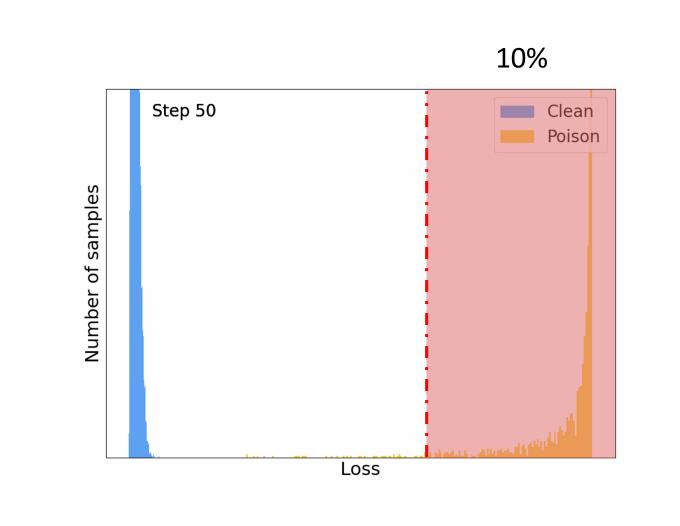


number of outlier samples

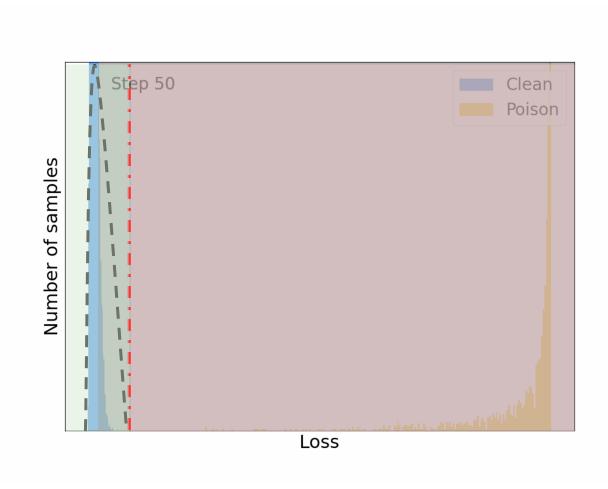
Threshold

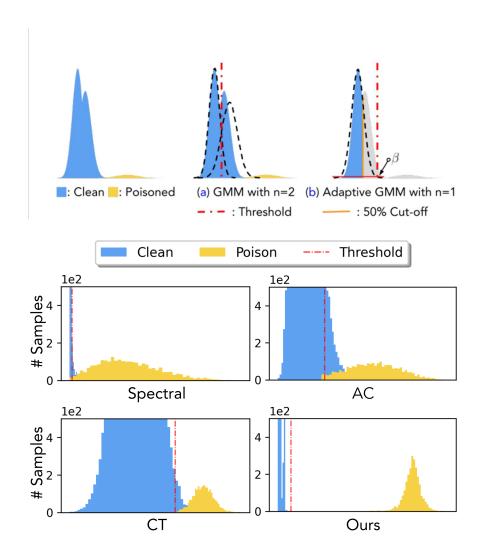


Threshold



Threshold





Experiment Metrics

Upstream:

$$TPR = \frac{Number of detected poison samples}{Number of all poison samples}$$

$$FPR = \frac{Number of detected clean samples}{Number of all clean samples}$$

Downstream:

$$ASR = \frac{Number\ of\ poison\ samples\ successfully\ attacked}{Number\ of\ all\ attack\ samples}$$

$$ACC = \frac{Number of samples successfully identified}{Number of all clean samples}$$

Experiment Results: SL

	Dirty-Label Ba	ckdoor Attacks		Clear	ı-Label Backdoor A	Average	Worst-Case	
 BadNets (5%)	Blended (5%)	WaNet (10%)	ISSBA (1%)	LC (1%)	SAA (1%)	Narci. (0.05%)	Average	Worst-Casc

~	,	

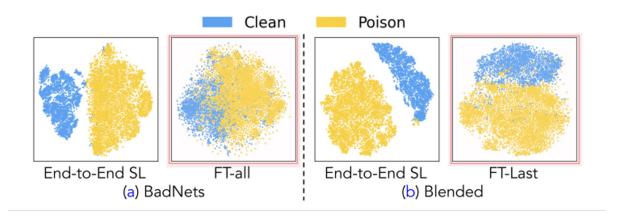
	ASR ↓	ACC ↑																
No Def.	96.5	93.4	94.9	93.5	99.4	93.5	92.6	94.1	100	94.7	76.7	94.4	99.7	94.9	94.3	94.1	100	93.4
Spectral	48.4	94.5	10.7	94.1	98.9	90.0	93.0	94.1	10.6	94.8	3.11	94.2	99.7	94.8	52.1	93.8	99.7	90.0
Spectre	34.8	94.5	6.57	94.1	100	89.6	14.0	94.3	100	94.7	0.86	94.4	99.8	94.9	50.9	93.8	100	89.6
Beatrix	55.6	93.8	94.9	93.8	2.13	94.1	17.0	94.2	4.12	94.8	8.64	94.3	90.4	94.5	39.0	94.2	94.9	93.8
AC	81.3	76.9	93.3	82.1	99.7	83.1	83.5	81.3	4.31	94.8	7.63	87.7	100	90.7	67.1	85.0	100	76.9
ABL	88.6	92.5	94.2	88.7	90.2	93.1	30.6	94.2	6.32	94.7	7.63	94.4	99.3	94.9	59.6	93.2	99.3	88.7
Strip	76.9	85.3	93.8	87.1	98.6	91.7	25.5	91.0	0.38	94.8	9.63	94.4	99.8	94.9	57.8	91.3	99.8	81.3
CT	3.42	93.1	31.3	91.2	0.53	92.5	1.12	93.2	0.44	91.1	2.16	93.2	100	94.1	19.9	92.6	100	91.1
Ours	2.68	94.9	0.44	95.2	1.89	93.1	1.55	94.8	1.16	94.9	1.14	94.4	9.68	94.9	2.65	94.6	9.68	93.1

Experiment Results: SSL

	C-brd ((0.5%)	C-Squ ((0.5%)	CTRL (1%)			
	ASR*↓	$ACC \uparrow$	ASR*↓	$ACC \uparrow$	ASR↓	$ACC \uparrow$		
No Def.	404	85.2	435	84.6	81.4	85.3		
Spectral	405	84.1	478	84.2	81.3	85.2		
Spectre	405	84.1	445	84.2	81.4	85.3		
Beatrix	402	84.2	444	84.2	16.8	85.0		
AC	513	73.26	376	73.2	36.5	78.6		
ABL	380	84.6	399	84.4	46.6	85.3		
Ours	100	85.1	87.0	84.9	2.47	85.9		

Table 5: Downstream evaluation and comparison results under Case-1 with SimCLR. We highlight the ASR below 20% in blue as a success defense, the ASR above 20% in red as a failed defense case. ASR* is the number of successfully attacked samples. We use ASR* instead for the C-brd and the C-Squ attack, referring to the original work [20], as their ASRs are naturally low to SSL paradigms.

Experiment Results: TL



More separation in embedding space for SL compared to TL

		FT	-all			FT-	last		Avorago		Worst-Case		
	BadNets (20%)		SAA	SAA (5%)		Blended (20%)		HTBA (5%)		Average		Worst-Case	
	ASR↓	ACC ↑	ASR↓	ACC ↑	ASR ↓	ACC ↑	ASR ↓	ACC ↑	ASR↓	ACC ↑	ASR↓	ACC ↑	
No Def.	97.5	91.3	98.7	92.3	93.9	71.4	56.4	72.8	86.6	82.0	98.7	71.4	
Spectral	97.4	91.5	80.2	91.8	91.4	68.7	16.9	72.1	71.5	81.0	97.4	68.7	
Spectre	95.8	91.8	75.9	91.9	92.5	69.8	10.9	72.3	68.8	81.5	95.8	69.8	
Beatrix	96.0	91.7	68.9	92.0	92.7	67.6	5.50	72.6	65.8	81.0	96.0	67.6	
AC	97.4	86.7	73.2	88.7	93.3	65.4	21.4	66.1	71.3	76.7	97.4	65.4	
ABL	96.4	91.7	80.1	92.0	93.7	68.3	14.2	72.2	71.1	81.1	96.4	68.3	
Strip	94.4	91.8	87.0	91.9	92.9	70.8	24.3	71.3	74.7	81.5	94.4	70.8	
СТ	93.2	91.8	18.6	91.9	93.9	71.4	8.60	72.5	53.6	81.9	93.9	71.4	
Ours	10.2	92.9	8.40	92.3	16.2	74.8	3.40	72.8	9.55	83.2	16.2	72.8	

Conclusion

- ASSET support different loss design to achieve the detection under multiple training paradigms.
- Comprehensive experiments demonstrate ASSET's effectiveness against diverse backdoor attacks under supervised, self-supervised, and transfer learning.
- 3. ASSET can be easily deploy into **other learning domain** like NLP.

pan.minz@northeastern.edu yizeng@vt.edu ruoxijia@vt.edu

Summary

- Strengths
 - Applicability to SL, SSL, and TL
 - Comprehensive evaluation on multiple attacks and comparison against many defenses
- Limitations
 - Assume availability of clean dataset
- Acknowledgement to the paper authors for sharing their slides