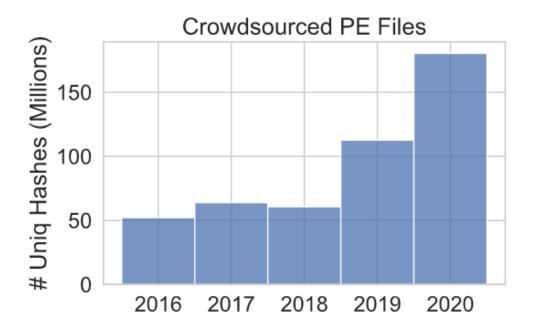
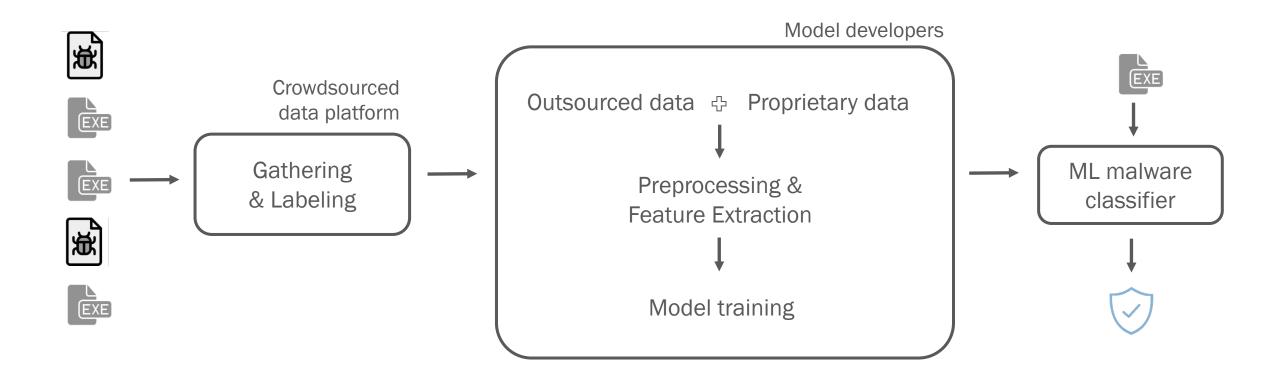
Poisoning static malware classification

Georgio Severi, J. Meyer, S. Coull, and A. Oprea, "Explanation-Guided backdoor poisoning attacks against malware classifiers", USENIX Security, 2021.

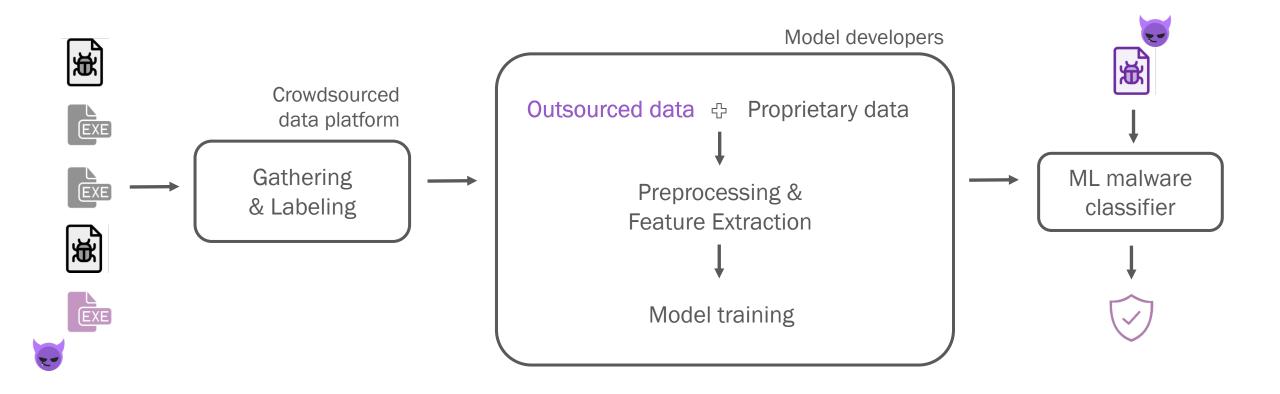
ML for malware detection

- Static analysis ML models play key role in pre-execution malware prevention
- Volume and diversity of executables makes training challenging
- Crowdsourced threat feeds provide an ideal source for training data





System overview



System overview

Backdoor attacks in ML

- Introduced by Gu et al. [3]
 - Descendant of "Red Herring" attacks [4]
- The training data is altered to induce the model to associate a pattern (trigger) with a target class
- Also referred to as Trojaning attacks [5] (model poisoning)

From [3]

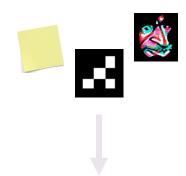
^[3] T. Gu, B. Dolan-Gavitt, and S. Garg, "Badnets: Identifying vulnerabilities in the machine learning model supply chain", arXiv 2017.

^[4] J. Newsome, B. Karp, and D. Song, "Paragraph: Thwarting signature learning by training maliciously", RAID 2006.

^[5] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and X. Zhang, "Trojaning attack on neural networks", NDSS 2018.

Backdoor attacks in malware classification

- The trigger pattern is mapped to a selection of features and values
- Attacker has no control over training labels -Clean-label [6, 7]
- Must respect the constraints dictated by the data semantics



Feature	LightGBM	EmberNN
major_image_version	1704	14
major_linker_version	15	13
major_operating_system_version	38078	8
minor_image_version	1506	12
minor_linker_version	15	6
minor_operating_system_version	5	4
minor_subsystem_version	5	20

^[6] A. Turner, D. Tsipras, and A. Madry. "Clean-label backdoor attacks" 2018.

^[7] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Goldstein, "Poison frogs! targeted clean-label poisoning attacks on neural networks", NeurIPS 2018.

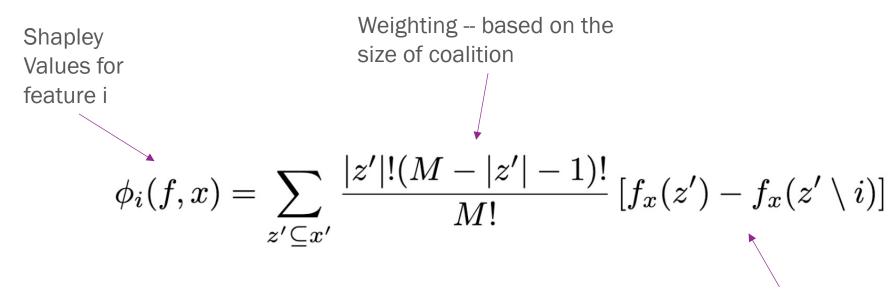
Challenges and intuition

- How to select effective feature-value assignments for the trigger?
 - 1. Unique and easy to memorize assignments
 - 2. Leverage existing latent space areas associated with the benign class
- Our method needs to be model agnostic
 - We cannot assume the victim model will be a neural network (as in vision/NLP)

- Use model explanation methods (XAI) to guide the generation of the trigger
 - Obtain an intuition of how each featurevalue assignment contributes to the model's output
- Adversarial ML researchers recently started using XAI methods
 - For evasion attacks [8, 9]
 - And defenses [10]

Using model explanations

SHapley Additive exPlanations (SHAP) [11]



- Sample a coalition of features
- Measure the output with the target feature
- Measure the output without the target feature
- Compute the delta
- Repeat for all possible coalitions and average

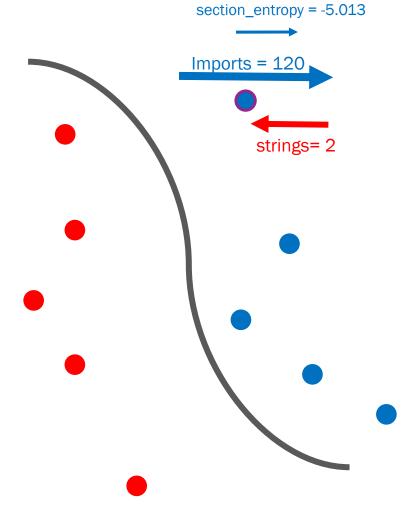
Contribution of the feature to the payoff of the coalition

Intuition

Using model explanations

SHapley Additive exPlanations (SHAP) [11]

- Model agnostic framework
- Local interpretability
 - Estimate influence of feature-value assignments on model decisions
- Global interpretability
 - Aggregate SHAP values over all the points for each feature
 - Provides intuition on feature importance and direction



Backdoor design strategies

Independent

Independently selects high-leverage features and uncommon/weakly-aligned values

- Stronger trigger memorization
- Identifiable points

Combined

Greedily selects coherent combinations of features and values aligned with target class

- Backdoor points are close to real data
- Stealthier

Evaluation setup

Dataset	Size	Туре	Models	Approach
EMBER [12]	800k samples 2351 features	Windows PE	LightGBM, DNN	Developed a specific backdooring utility
Drebin [13]	128k samples 545k features	Android APK	Linear SVM	Restricted modifications to manifest file
Contagio [14]	10k samples 135 features	PDF	Random Forest	Restricted modifications as in Šrndić et al. 2014

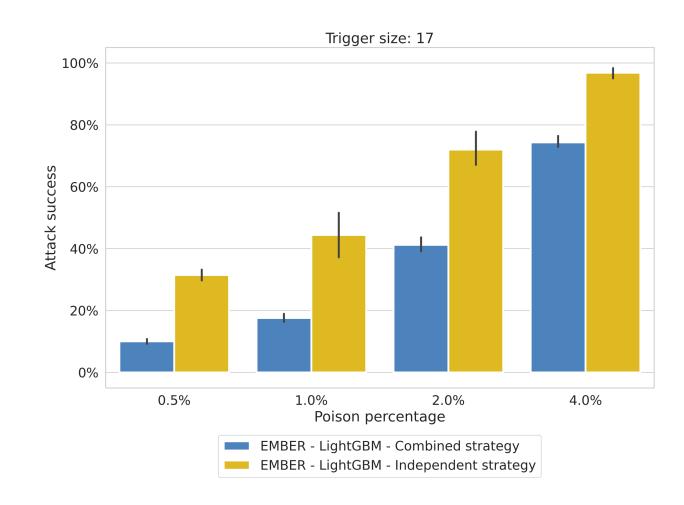
^[12] H. S. Anderson, and P. Roth, "Ember: an open dataset for training static pe malware machine learning models", arXiv 2018.

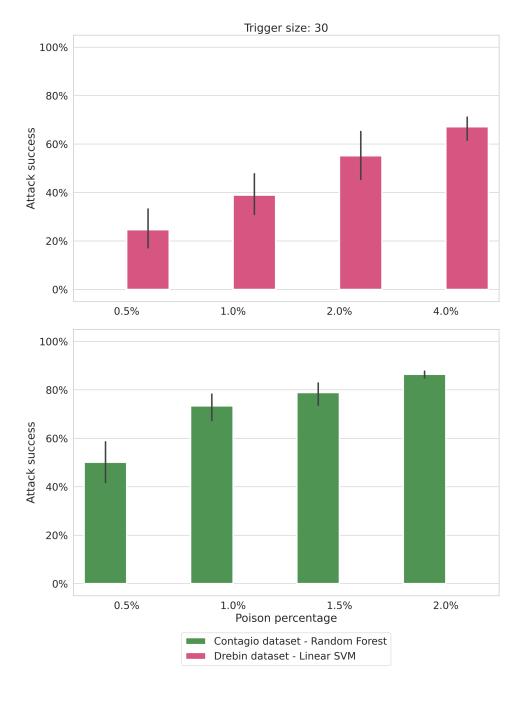
^[13] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, "Drebin: Effective and explainable detection of android malware in your pocket", NDSS 2014.

^[14] N. Šrndić and P. Laskov. "Practical evasion of a learning-based classifier: A case study." In 2014 IEEE symposium on security and privacy, pp. 197-211. IEEE, 2014.

Results on PE files

- Significant damage at 1% poison rate and 17 manipulated features
- Attack success scales with poisoning rate and trigger size
- Minimal side effect on victim's generalization capability
- Similar results for the Neural Network





Different file types

- Drebin (Android APK):
 - Around 40% success at 1% poisoning rate and 30 features
 - Importance estimation on surrogate model

- Contagio (PDF):
 - 75% success at 1% poisoning rate with 30 features
 - Higher variance due to dataset size

About mitigations

- We adapted different approaches from computer vision:
 - Spectral signatures [15]
 - Activation clustering [16]
 - Isolation Forests [17]
- No tested defense found all backdoors consistently
- Backdoors generated by the combined strategy are hard to identify

[15] B. Tran, J. Li, and A. Madry. "Spectral signatures in backdoor attacks," NeurIPS 2018.

[16] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee, I. Molloy, and B. Srivastava, "Detecting backdoor attacks on deep neural networks by activation clustering", arXiv 2018.

[17] F. T. Liu, K. M. Ting, and Z. Zhou, "Isolation forest", ICDM 2008.

Takeaways

- Benign binaries can be used as carriers for poisoning attacks
- Model interpretability methods can be leveraged to guide the backdoor generation
 - This approach is model-agnostic and applies to multiple data modalities
- A sophisticated adversary can generate stealthy backdoors

