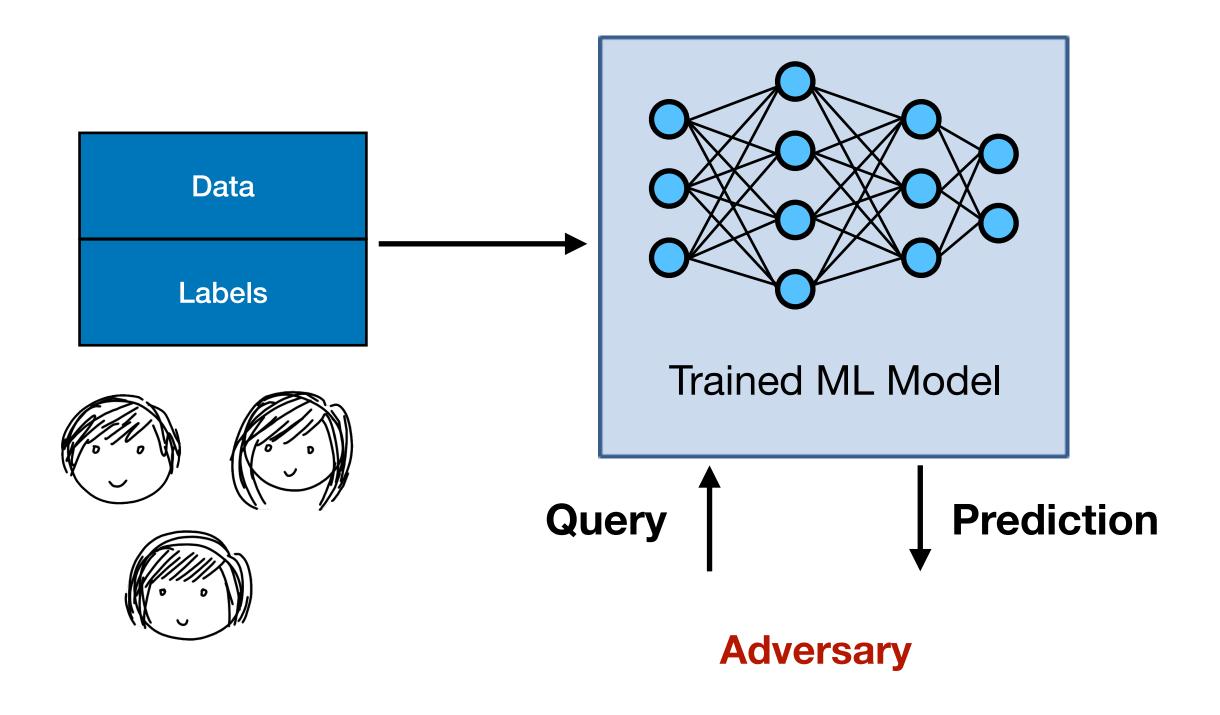
SNAP: Efficient Extraction of Private Properties with Poisoning

Harsh Chaudhari^{*}, John Abascal^{*}, Alina Oprea^{*}, Matthew Jagielski[†], Florian Tramèr[‡], Jonathan Ullman^{*}

*Northeastern University, †Google Research, ‡ETH Zurich

Privacy Attacks in Machine Learning



- Membership Inference: Determine if a data sample was present in the training set of the ML model [SSS17, YGF18, CCN21].
- Attribute Inference: Extract the missing attribute of a training record [*JE22*, *MDK22*].
- Property Inference: Learn properties of a group of individuals about the dataset [GWY18, ZTO21, SE22].

[SSS+17]: Shokri et al. Membership Inference against Machine Learning Models. IEEE S&P 2017.

[YGF+18]: Yeom et al. Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting. IEEE CSF 2018.

[CCN+21]: Carlini et al. Membership Inference Attacks from First Principles. IEEE S&P 2021.

[JE22]: Jayaraman et al. Are Attribute Inference Attacks Just Imputation? ACM CCS 2022.

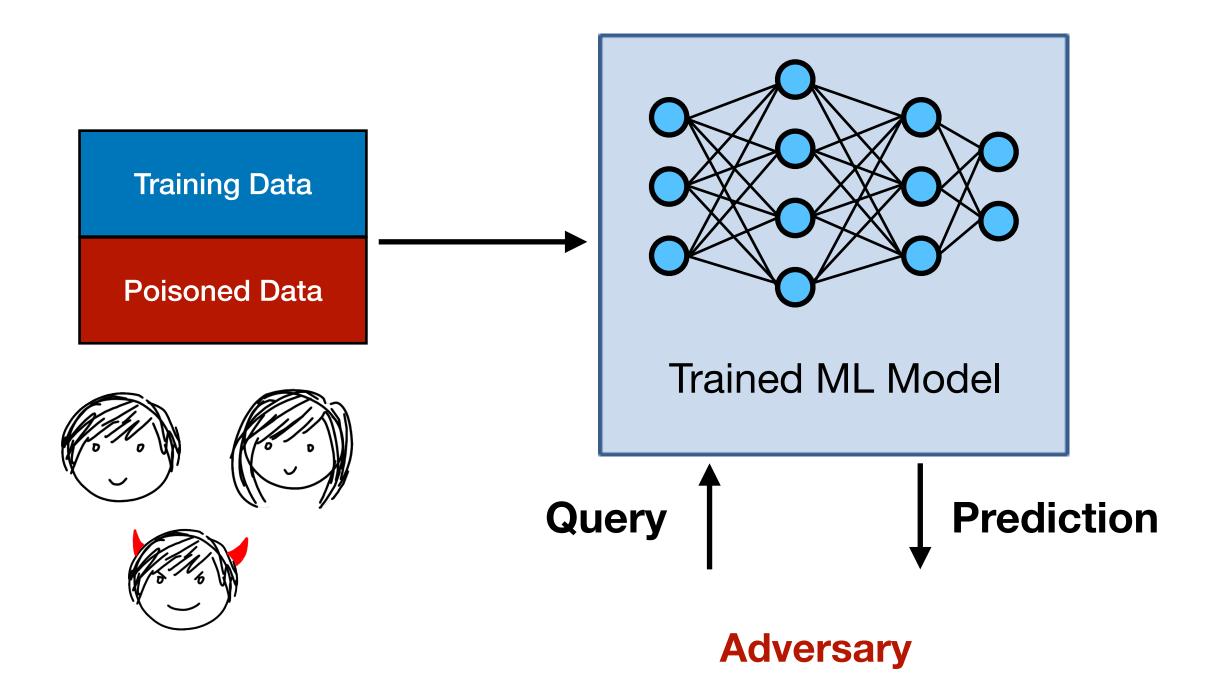
[MDK+22]: Mehnaz et al. Are Your Sensitive Attributes Private? Novel Model Inversion Attribute Inference Attacks on Classification Models. USENIX 2022.

[GWY+18]: Ganju et al. Property inference attacks on fully connected neural networks using permutation invariant representations. ACM CCS 2018.

[ZTO21]: Zhang et al. Leakage of dataset properties in Multi-Party machine learning. USENIX 2021.

[SE22]: Suri et al. Formalizing and estimating distribution inference risks. PETS 2022.

Amplifying Privacy Leakage with Poisoning



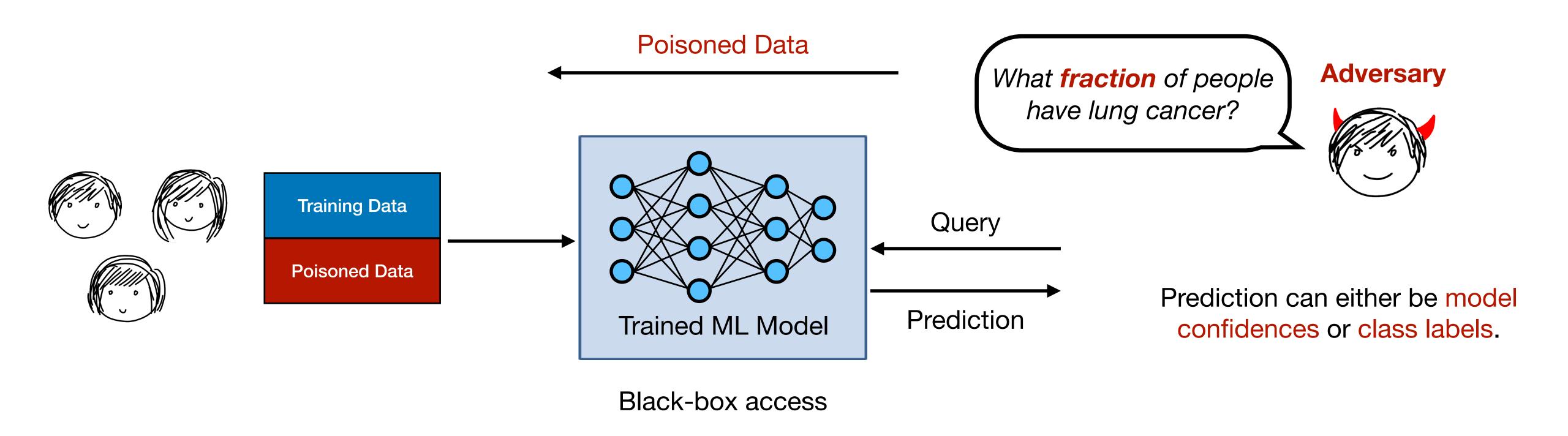
- Membership Inference: [TSJ22, CSS22] showed 8x better attack success than [CCN21].
- Attribute Inference: [TSJ22] showed 30x better attack success than [MDK22].
- Property Inference: [MGC22] showed 2x better attack success than [GWY18].

[TSJ+22]: Tramèr et al. Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets. ACM CCS 2022.

[CSS+22]: Chen et al. Amplifying Membership Exposure via Data Poisoning. NeurIPS 2022.

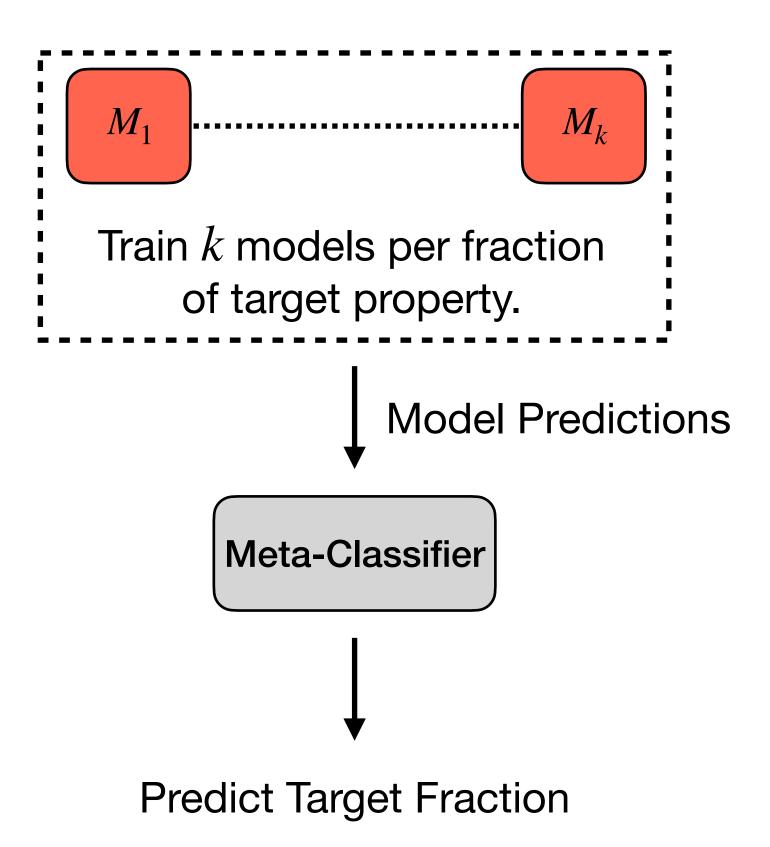
[MGC22]: Mahloujifar et al. Property inference from poisoning. IEEE S&P 2022.

Threat Model: Property Inference



The success of the adversary is measured by distinguishing between two fractions of the target property.

Limitations of [MGC 22]



Drawbacks:

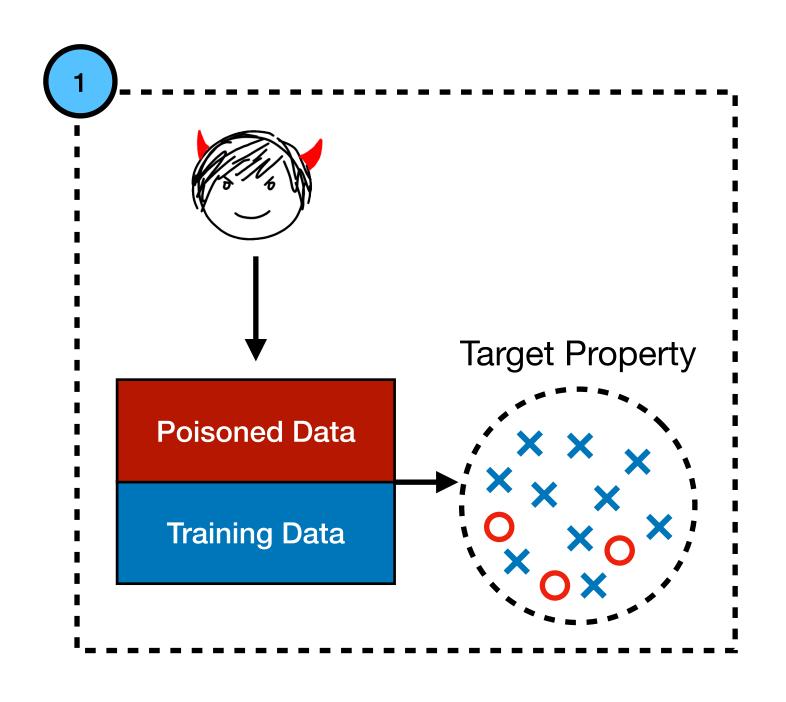
- Computationally expensive approach, requires training $k \approx 500\,$ shadow models per fraction.
- Requires a large poisoning rate for high attack accuracy.

[MGC22]: Mahloujifar et al. Property inference from poisoning. IEEE S&P 2022.

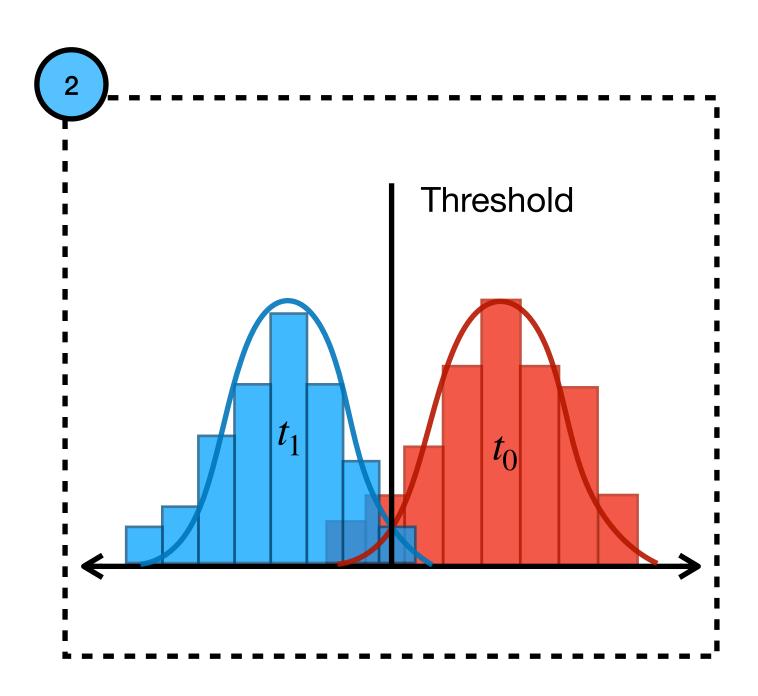
Our Contributions

- New property inference attack with poisoning: SNAP.
- Advantages: 34% higher attack accuracy, 56x faster, and 4-6x less poisoning than prior work [MGC22].
- Backed by a Theoretical Framework for Model Confidence Learning under poisoning.
- Extensions: Label-only, Property Existence, and Size Estimation.
- Evaluation: Tested over 18 properties with attack accuracy $\geq 90\%$ at low poisoning.

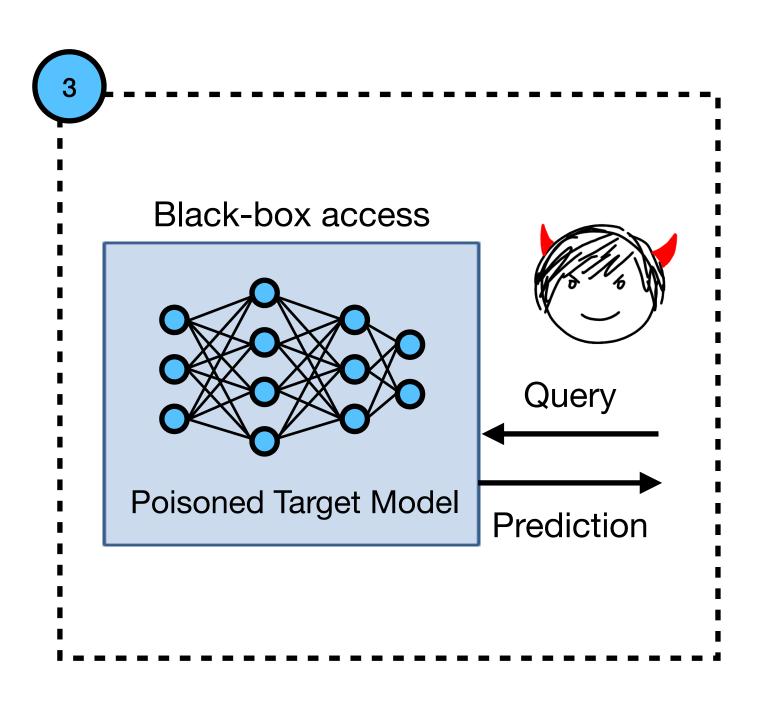
SNAP Attack Overview



Data Poisoning

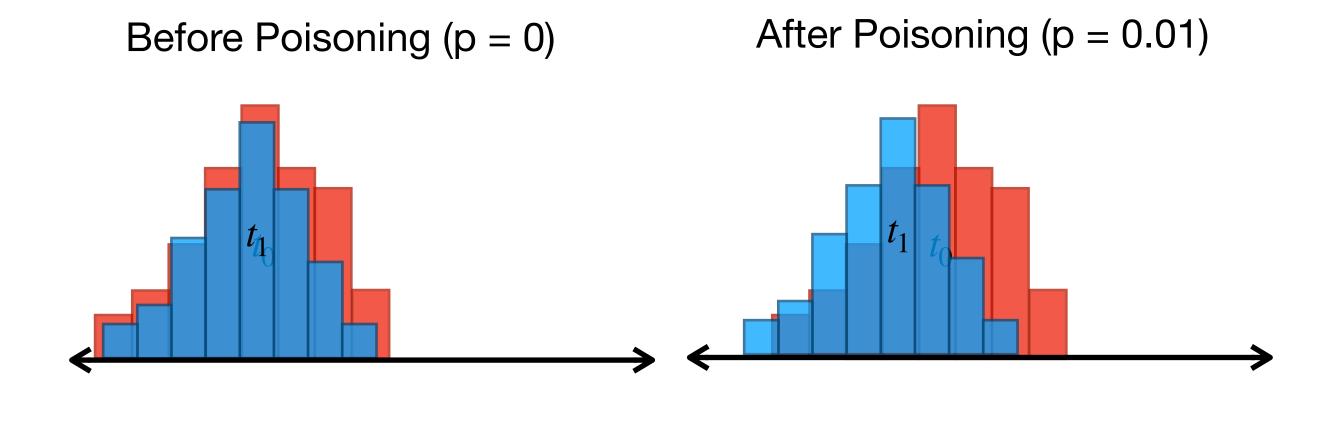


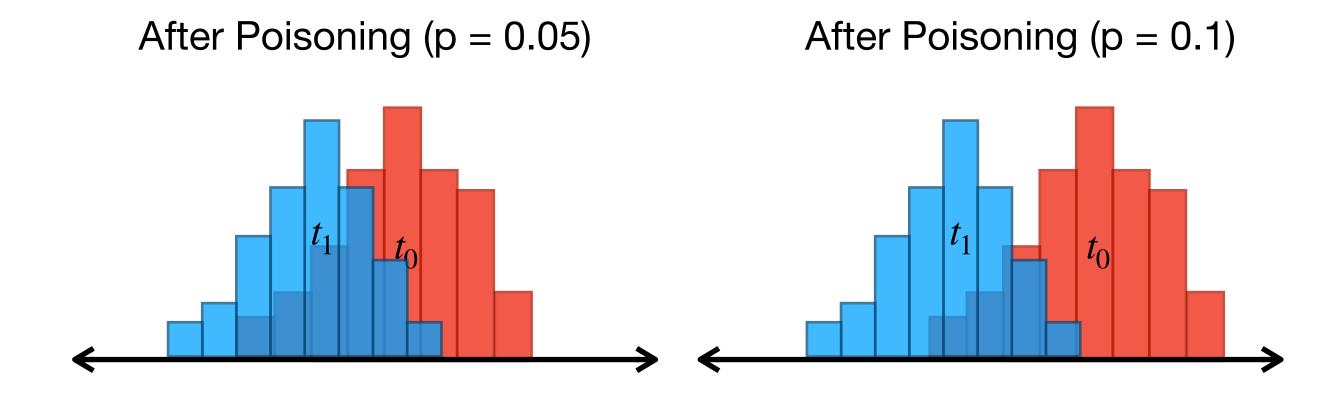
Model Confidence Learning



Distinguishing Test

SNAP Attack: Insights

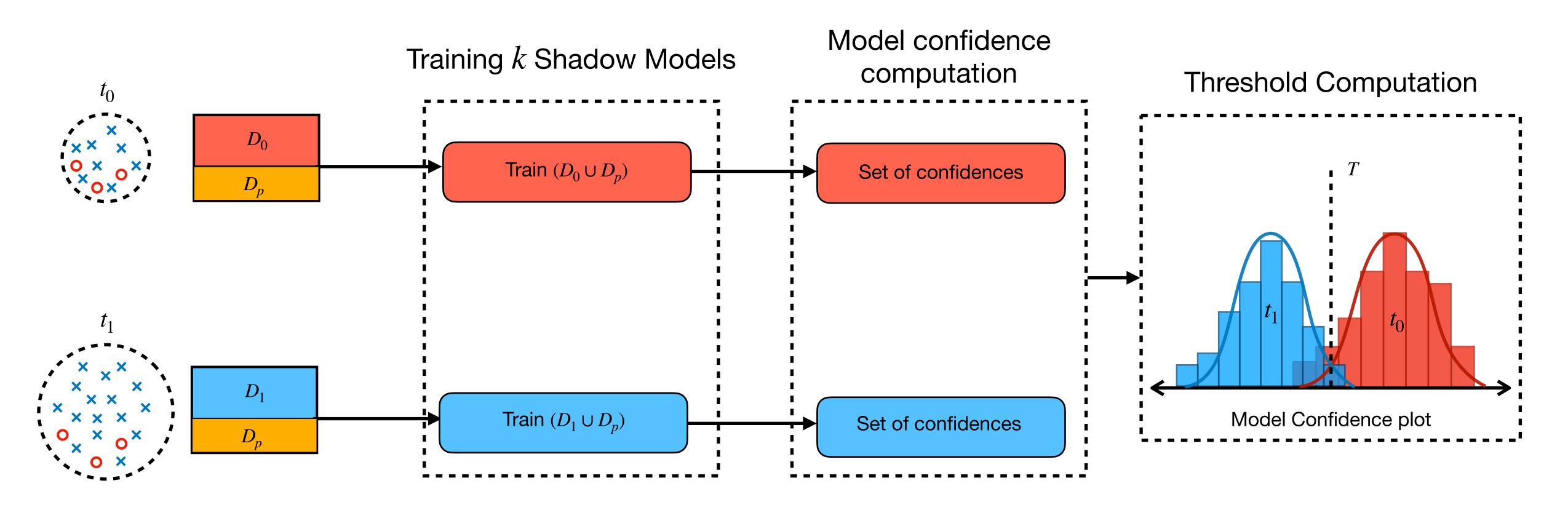




[JSH+21]: Jagielski et al. Subpopulation data poisoning attacks. ACM CCS 2021.

- Consider two fractions $t_0 < t_1$ of the target property.
- Poisoning disparately impacts distribution of confidences for the two fractions.
- Poisoning causes higher misclassification rate for fraction t_0 .
- Confidence separation can be used as a tool for distinguishing test.
- Mount a subpopulation poisoning attack [JSH21].
- Theoretical analysis explaining the separation in confidences.

SNAP Attack: Model Confidence Learning

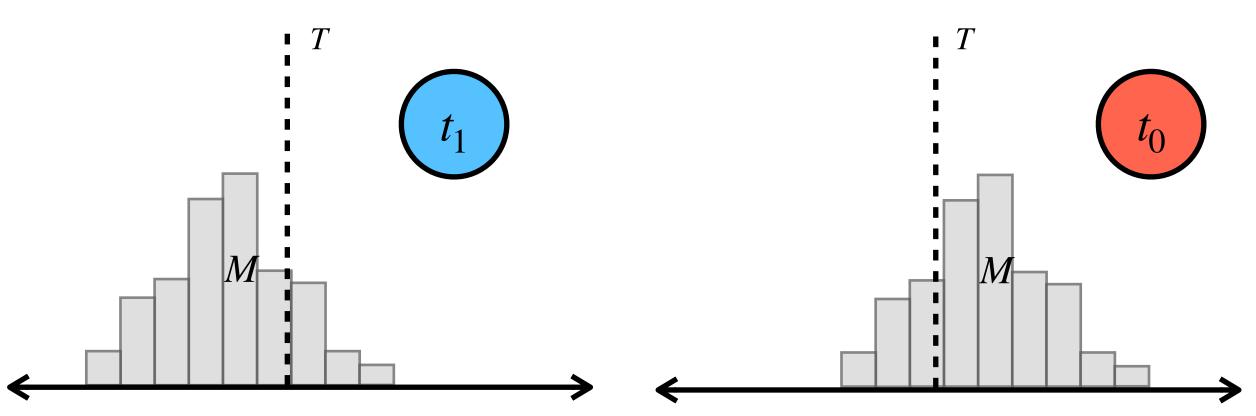


- [MGC22] requires $k \approx 1000$ shadow models to train a meta-classifier for the distinguishing test.
- Our attack directly learns model confidences requiring $k \leq 8$ for the distinguishing test.

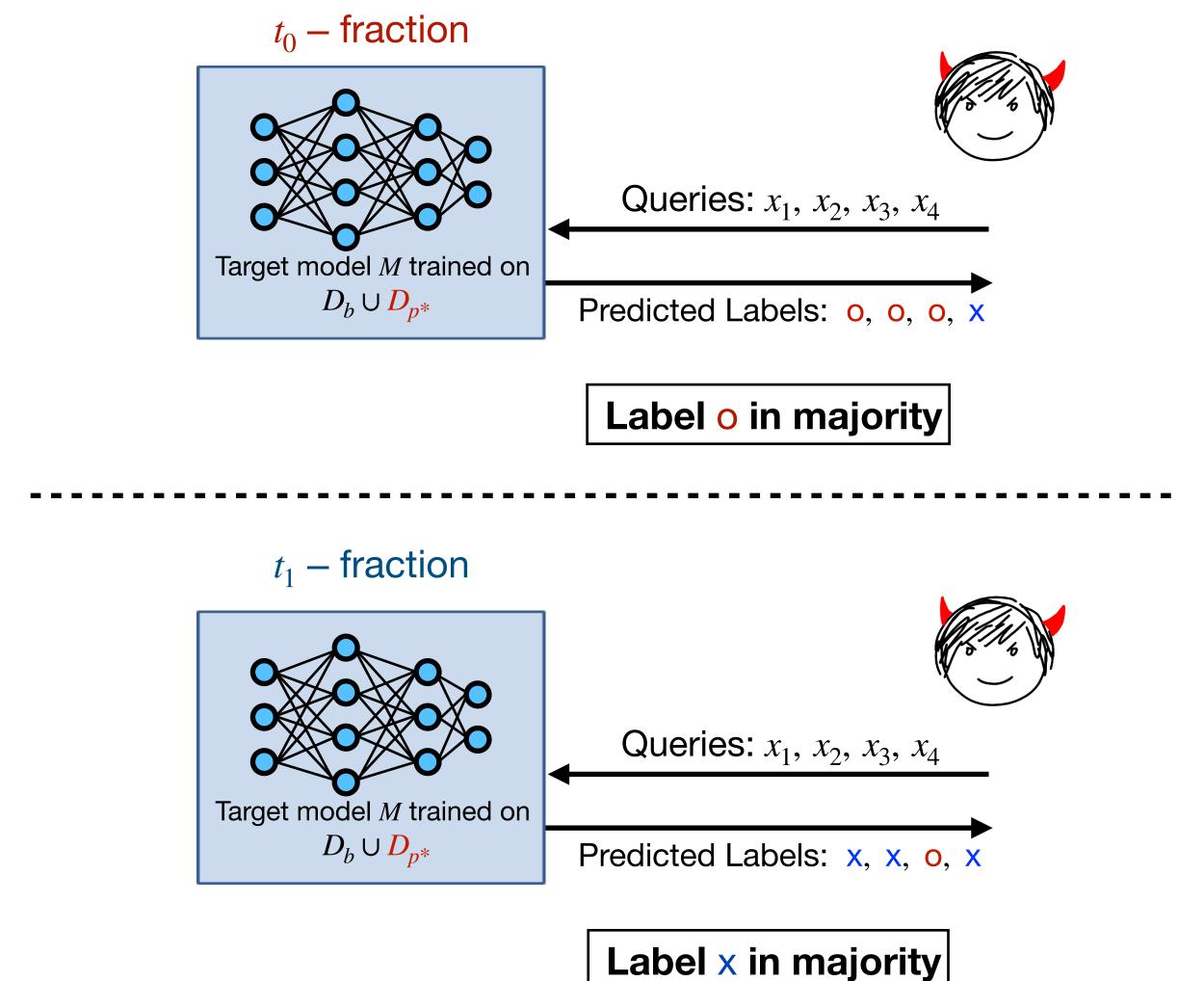
SNAP Attack: Distinguishing Test

Poisoned Target model Query Query Model Confidence

- Query the model on samples with the target property and obtain confidences.
- We provide **analysis on the total queries** attacker needs to succeed in the test.



SNAP Extension: Using Class Labels

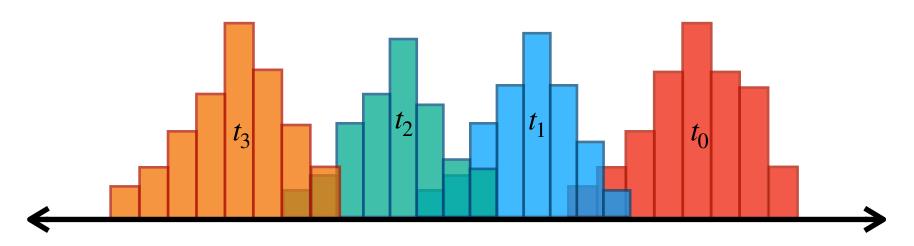


Key Insight:

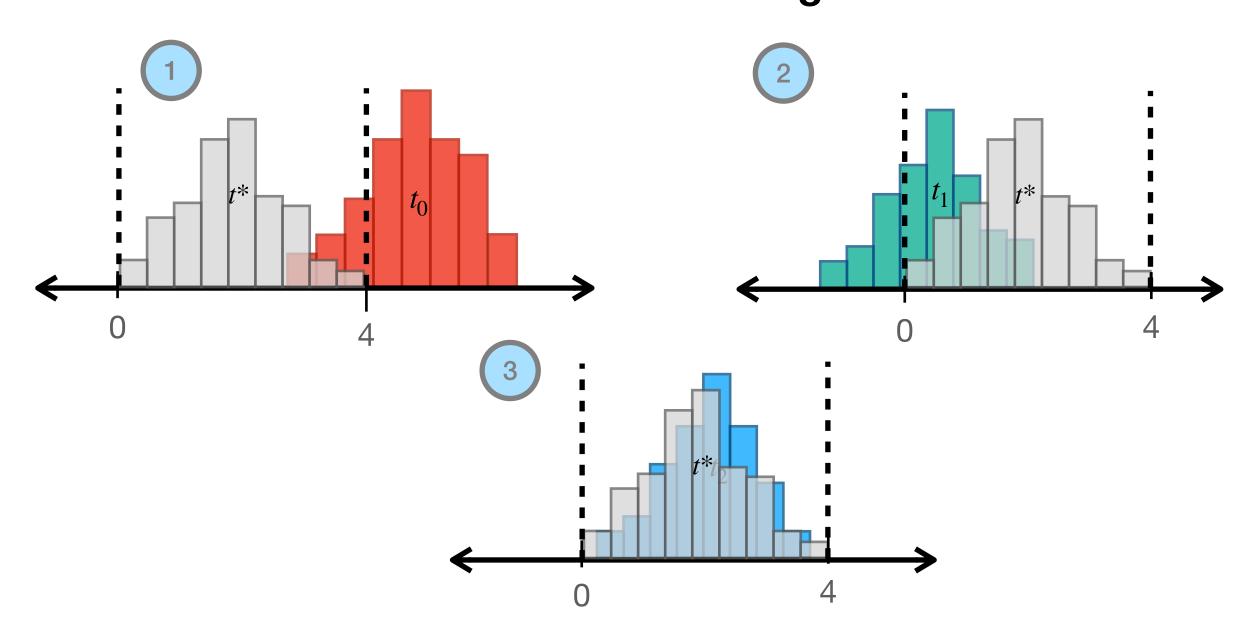
- Choose a poisoning rate p* such that
 - Labels for majority of the samples queried on a model trained on t_0 fraction flips to the target label.
 - Labels for majority of the samples queried on a model trained t_1 fraction stays the original label.
- p* is computed by analyzing the behavior of confidence distribution for the two fractions.

SNAP Extension: Size Estimation

Target Property Sizes: $0 \le t_0 < t_1 < t_2 < t_3 \le 1$



Size Estimation Algorithm



Insights:

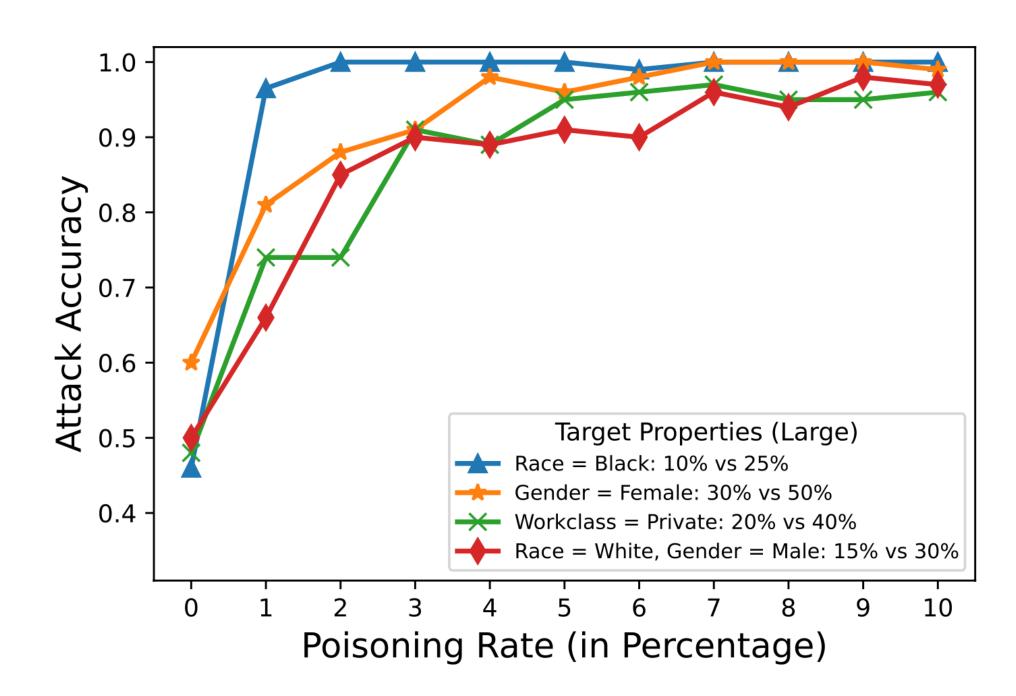
- Very realistic threat model, adversary does not have knowledge of the target fraction t^* .
- Given a fixed poison rate, the distributions follow a strict size ordering.
- Given a set of ordered elements, we can exploit binary search to find the target fraction.
- Previous approaches [SE22, MGC22] required $k \approx 20,000$ shadow models to perform size estimation.
- Our approach exponentially drops the number of shadow models to $k \leq 14$.

Evaluation

- Datasets: Adult, Census, Bank Marketing and CelebA.
- Target Properties: We test on 18 different target properties. Three broad categories:
 - Large-sized: Target property > 10% of the training set.
 - Medium-sized: $1\% \le \text{Target property } \le 10\% \text{ of the training set.}$
 - Small-sized: Target property < 1% of the training set.
- Model Architectures: Feed-forward Neural Network and ResNet-18.
- Evaluation Metric:
 - Attack Accuracy: Accuracy of correctly distinguishing which fraction of the target property the model was trained on.
 - Total Execution Time: End-to-end running time to mount the attack.

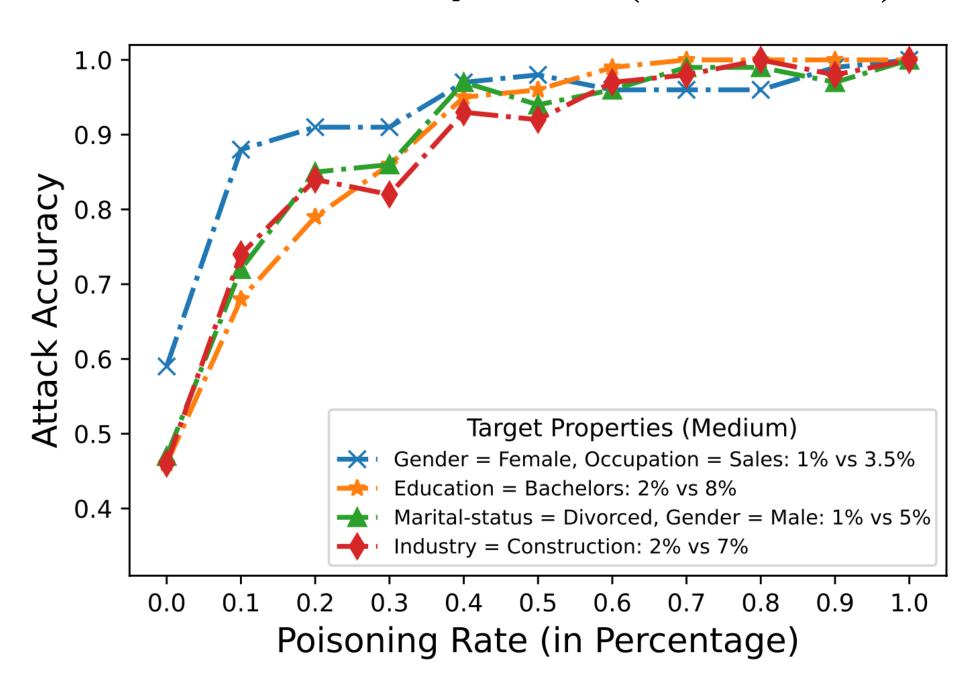
Evaluation of SNAP on Adult and Census

Large Properties ($\geq 10\%$)



Attack Accuracy $\geq 90\%$ with 5% poisoning.

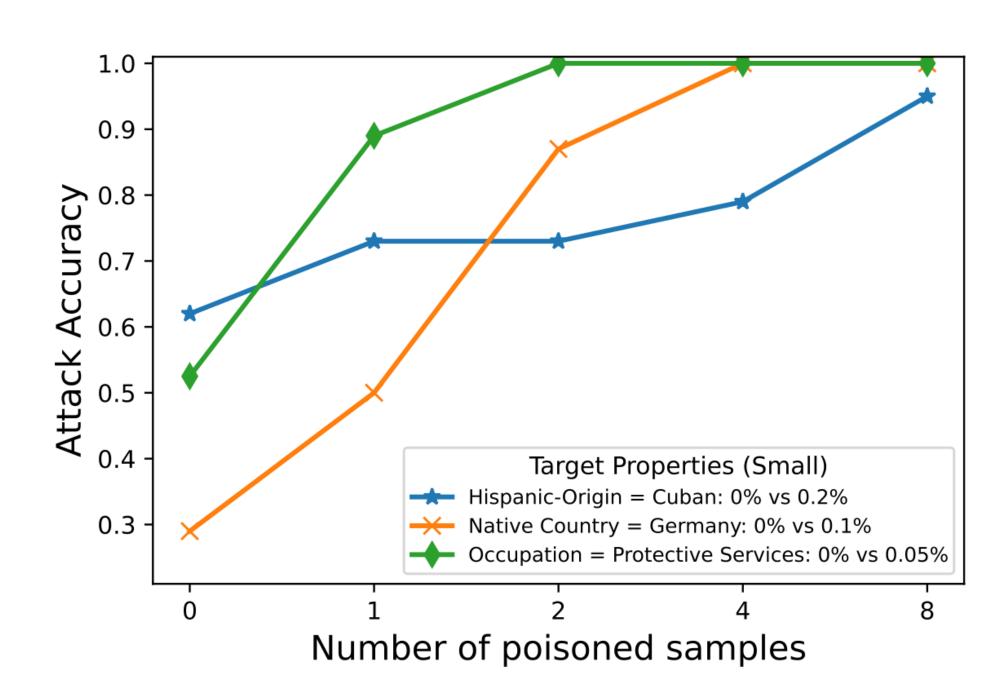
Medium Properties (1% - 10%)



Attack Accuracy $\geq 90\%$ with only 0.6% poisoning.

SNAP Extensions

Property Existence: Generalization of Membership Inference where $t_0 = 0$ and $t_1 > 0$



Attack Accuracy $\geq 90\%$ with 8 samples.

Property Size Estimation: Estimating the size of the target property.

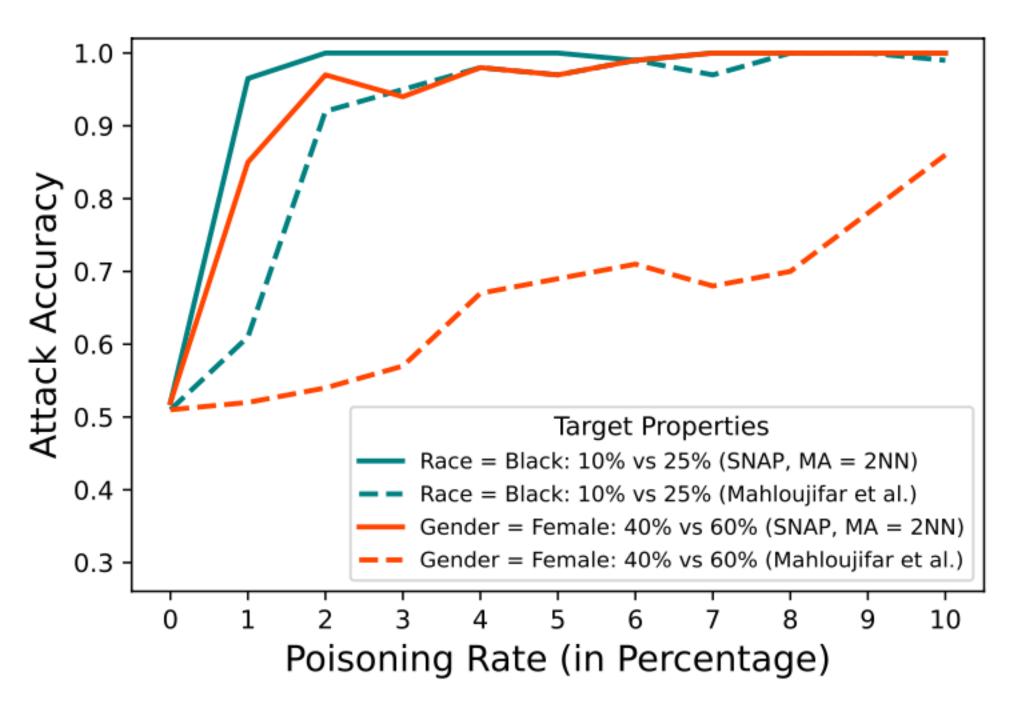
Medium sized Property	Actual Size	Our Estimate		
		0% poison	1% poison	
Construction	3%	32.6%	3.1%	
Female Sales	3.9%	24.9%	4.3%	

Large sized Property	Actual Size	Our Estimate		
		0% poison	5% poison	
White Male	43%	31.5%	40%	
African- American	10.2%	17.5%	9.3%	

Accurate estimation with low poisoning. (1 % for medium and 5 % for large)

SNAP Comparison to [MGC 22]

SNAP using Model Confidences



- Achieves 34 % higher attack accuracy than [MGC22].
- $56 \times$ faster than [MGC22].
- Requires $4 6 \times$ less poisoning than [MGC22].

SNAP using only Class Labels

Target Property	Poisoning Rate	[MGC22]	SNAP	
White Male	5.7%	65%	95%	
Private Sector	1.1%	56%	94%	
Female	4.5% 70%		98%	
African American 3.7%		97%	100%	

Consistently outperforms [MGC22] and same efficiency benefits as our confidence attack.

DP-SGD as a Defense?

- Differential Privacy is traditionally designed to protect an individual sample's privacy.
- DP is not intended to provide defense against property inference.
- Empirical confirmation on DP-SGD failing to prevent property inference attacks.

Target Property	Attack Accuracy			
	$\epsilon = 8$	$\epsilon = 4$	$\epsilon = 2$	$\epsilon = 1$
White Male	95%	98%	90%	75%
African-American	100%	100%	100%	98%

Conclusion

- We propose a novel property inference attack that is **more efficient**, requires **less poisoning** and has **higher attack accuracy** than previous work [MGC22].
- We provide a theoretical framework explaining the effectiveness and efficiency of our SNAP attack.
- We extend our attack to incorporate label-only, property existence and property estimation attacks.
- **Defending** against property inference attacks is still an **open problem**. We empirically evaluate and show that Differential Privacy is not enough to prevent property inference attacks.

Thank You

chaudhari.ha@northeastern.edu

