Poison Forensics: Traceback of Data Poisoning Attacks in Neural Networks

Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, Ben Y. Zhao U. Chicago

Discussion Lead: Evan Rose

Forensics Background

What is Forensics?

forensic 2 of 2 noun

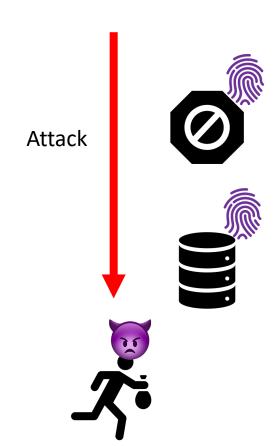
- 1 : an argumentative exercise
- **forensics** plural in form but singular or plural in construction : the art or study of argumentative discourse
- **3 forensics** plural in form but singular or plural in construction: the application of scientific knowledge to legal problems especially: scientific analysis of physical evidence (as from a crime scene)

Source: Merriam-Webster

- **Digital Forensics**: the collection, preservation, and analysis of digital data and actions in a manner that is admissible in court
- Digital Forensics and Incident
 Response (DFIR): identifying and
 responding to cybersecurity incidents

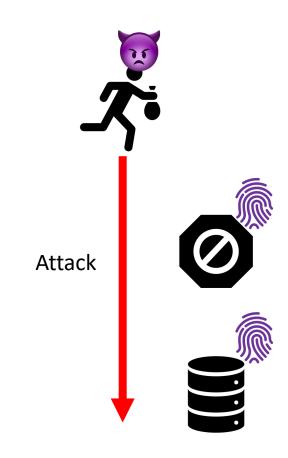
- **Digital Forensics**: the collection, preservation, and analysis of digital data and actions in a manner that is admissible in court
- Digital Forensics and Incident Response (DFIR): identifying and responding to cybersecurity incidents

Why do Forensics?



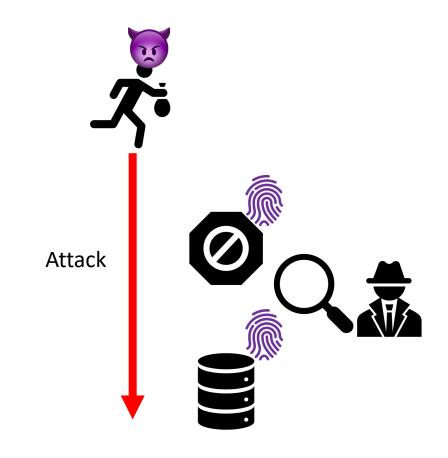
- Digital Forensics: the collection, preservation, and analysis of digital data and actions in a manner that is admissible in court
- Digital Forensics and Incident Response (DFIR): identifying and responding to cybersecurity incidents

Why do Forensics?



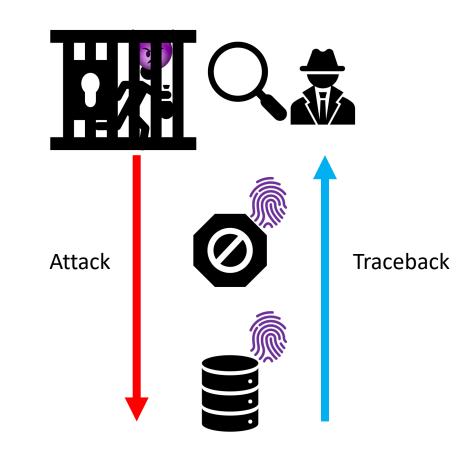
- Digital Forensics: the collection, preservation, and analysis of digital data and actions in a manner that is admissible in court
- Digital Forensics and Incident Response (DFIR): identifying and responding to cybersecurity incidents

Why do Forensics?



- Digital Forensics: the collection, preservation, and analysis of digital data and actions in a manner that is admissible in court
- Digital Forensics and Incident
 Response (DFIR): identifying and
 responding to cybersecurity incidents

Why do Forensics?



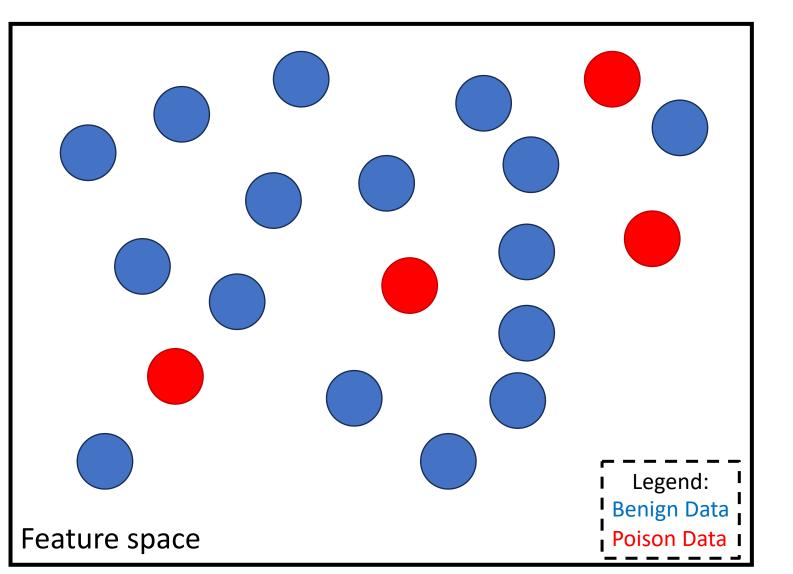
Forensics for ML

- Specifically, data poisoning
- Given:
 - Model F trained on training data D
 - Misclassification event (x_a, y_a)
- Goal:
 - Determine a set of **poisons** $S \subseteq D$ responsible for the event
- Desired properties:
 - High precision (negative consequences for accused parties)
 - High recall (system effectiveness)
 - Generality across attack types

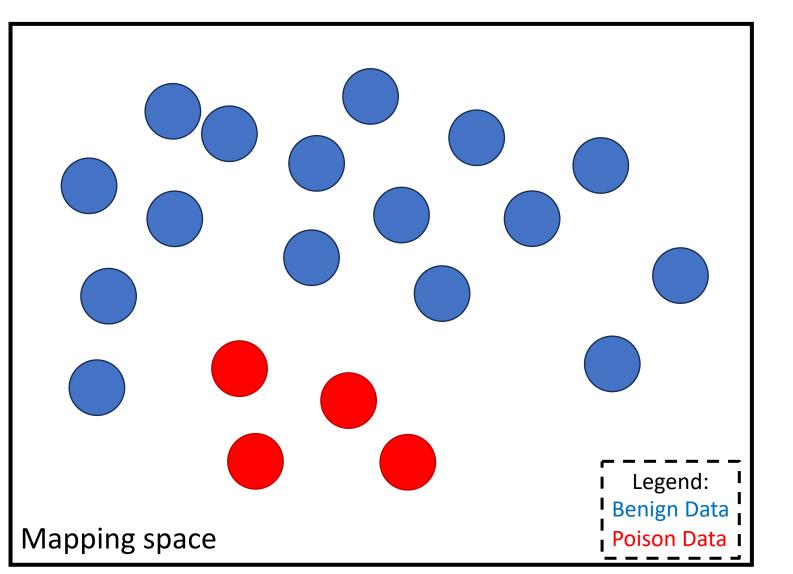
Defenses vs. Forensics

- Defense: stop the attacker before the model is trained / deployed
 - E.g., by some kind of outlier detection
 - Hard to anticipate attack strategies in advance!
 - Preferable to prevent damage
- Forensics: detect and respond to attacks when defenses fail
 - Damage is already done
 - But, able to leverage new knowledge about attacker
- Modern security (outside of ML) uses both forms of defense

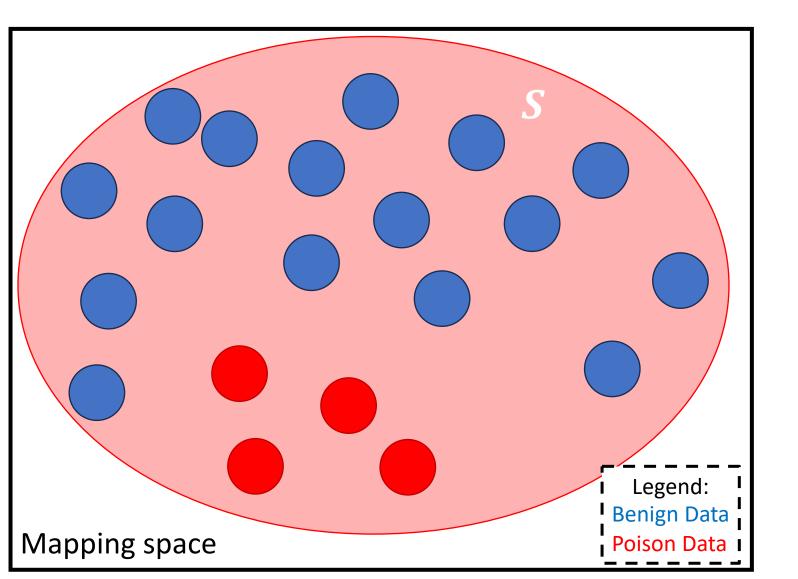
Core Mechanism: Cluster and Prune



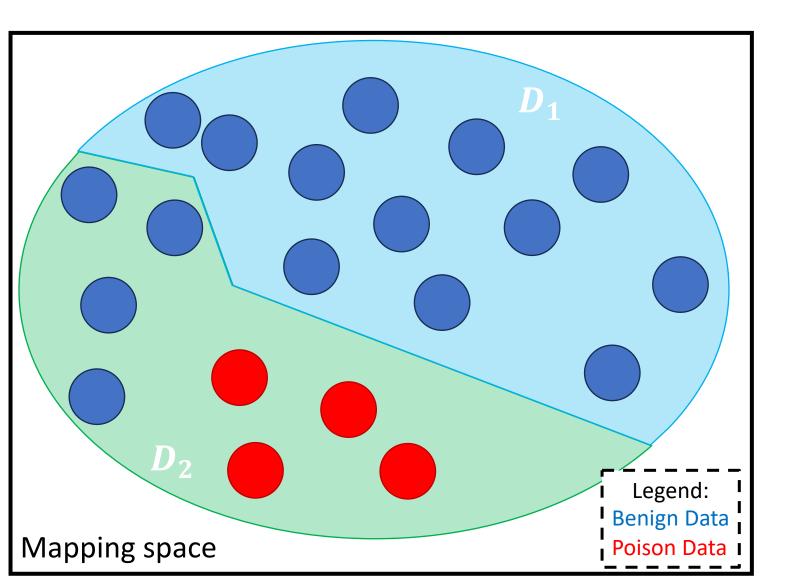
- 1. Apply data mapping
- 2. Maintain candidate poisons S
- 3. While not done:
 - $D_1, D_2 \leftarrow \text{Cluster}(S, 2)$
 - Prune innocent points
- 4. Return *S*



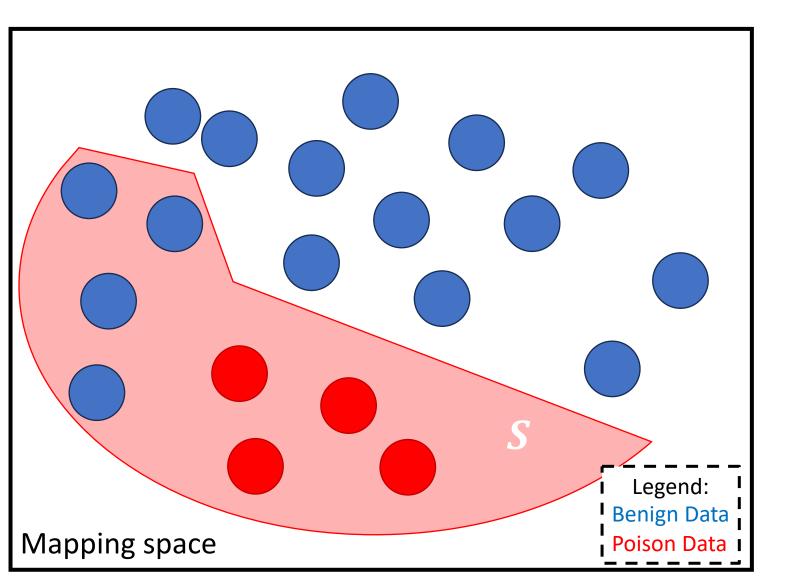
- 1. Apply data mapping
- 2. Maintain candidate poisons *S*
- 3. While not done:
 - $D_1, D_2 \leftarrow \text{Cluster}(S, 2)$
 - Prune innocent points
- 4. Return S



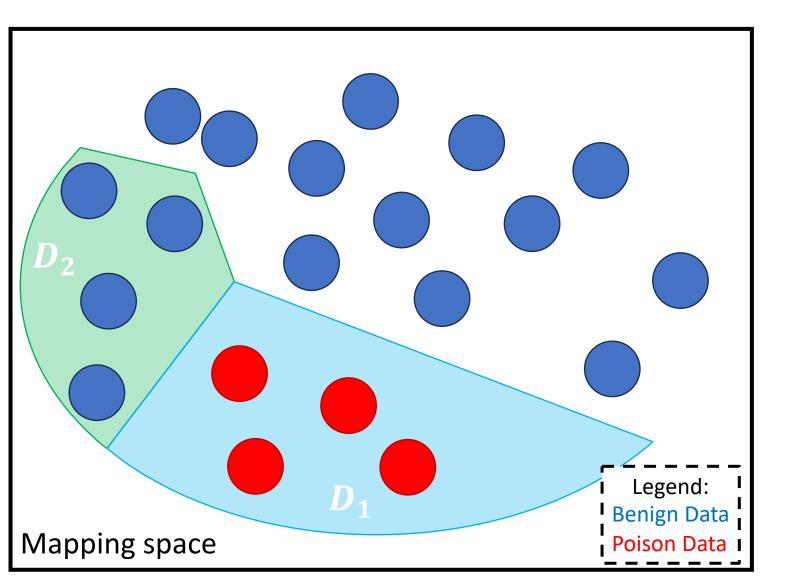
- 1. Apply data mapping
- **2.** Maintain candidate poisons S
- 3. While not done:
 - $D_1, D_2 \leftarrow \text{Cluster}(S, 2)$
 - Prune innocent points
- 4. Return *S*



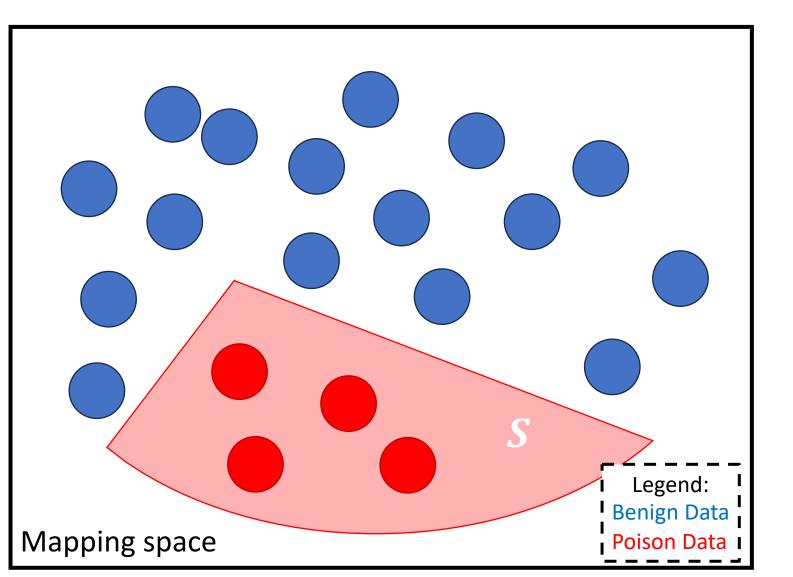
- 1. Apply data mapping
- 2. Maintain candidate poisons *S*
- 3. While not done:
 - $D_1, D_2 \leftarrow \text{Cluster}(S, 2)$
 - Prune innocent points
- 4. Return *S*



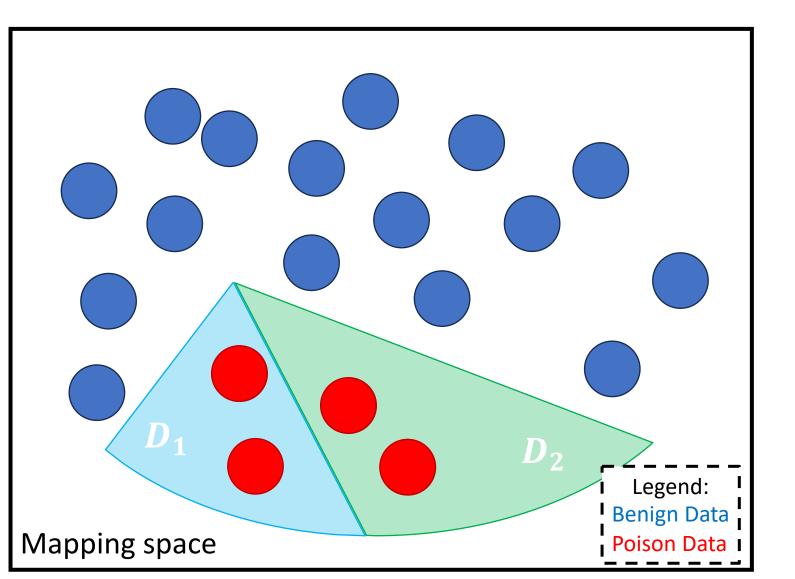
- 1. Apply data mapping
- 2. Maintain candidate poisons *S*
- 3. While not done:
 - $D_1, D_2 \leftarrow \text{Cluster}(S, 2)$
 - Prune innocent points
- 4. Return *S*



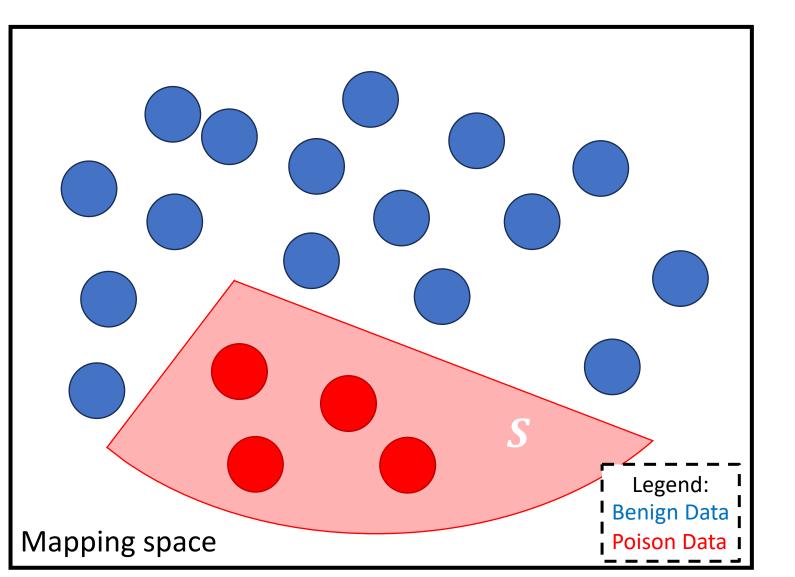
- 1. Apply data mapping
- 2. Maintain candidate poisons *S*
- 3. While not done:
 - $D_1, D_2 \leftarrow \text{Cluster}(S, 2)$
 - Prune innocent points
- 4. Return S



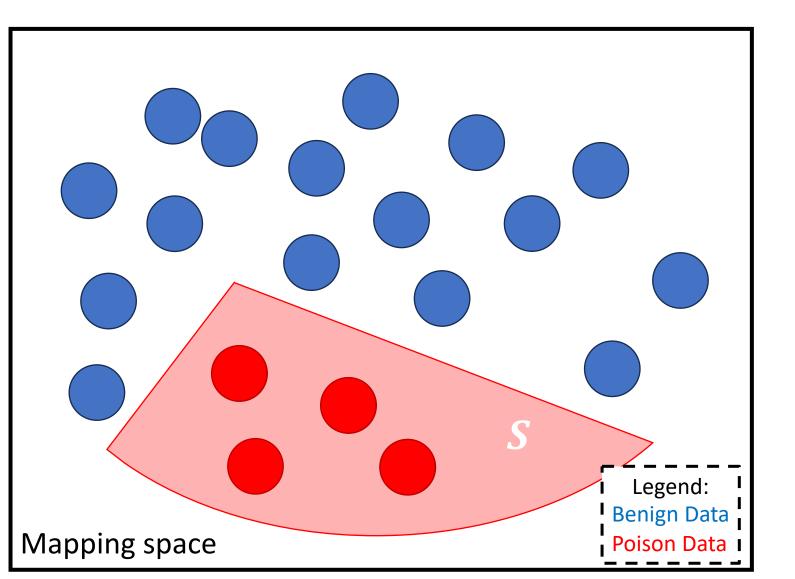
- 1. Apply data mapping
- 2. Maintain candidate poisons *S*
- 3. While not done:
 - $D_1, D_2 \leftarrow \text{Cluster}(S, 2)$
 - Prune innocent points
- 4. Return S



- 1. Apply data mapping
- 2. Maintain candidate poisons *S*
- 3. While not done:
 - $D_1, D_2 \leftarrow \text{Cluster}(S, 2)$
 - Prune innocent points
- 4. Return *S*



- 1. Apply data mapping
- 2. Maintain candidate poisons *S*
- 3. While not done:
 - $D_1, D_2 \leftarrow \text{Cluster}(S, 2)$
 - Prune innocent points
- 4. Return *S*



- 1. Apply data mapping
- 2. Maintain candidate poisons *S*
- 3. While not done:
 - $D_1, D_2 \leftarrow \text{Cluster}(S, 2)$
 - Prune innocent points
- 4. Return S

Cluster and Prune - Details

Data Mapping and Clustering:

Data mapping rule:

Uniform probability vector

(e.g., [1/3, 1/3, 1/3])

$$x \leftarrow \nabla_{\theta} \ell(F(x), V_{uniform})$$

Motivation: measure **impact** on **model parameters** relative to **untrained model**

Clustering: (Mini-batch) K-Means

Cluster and Prune - Details

Identifying benign clusters:

(Functionally) **unlearn** a cluster D_i from the entire dataset D:

$$F^- \leftarrow \arg\min\left(\sum_{(x,y)\in D_i} \ell(F(x),V_{uniform}) + \sum_{(x,y)\in D\setminus D_i} \ell(F(x),y)\right)$$
Forget the cluster D_i
Preserve behavior on the rest

Declare D_i benign if adversarial loss decreases:

$$\ell(F(x_a), y_a) \ge \ell(F^-(x_a), y_a)$$

Experimental Results

Experimental Setup

- 4 image classification tasks
 - CIFAR-10
 - ImageNet
 - VGGFace
 - Wenger Face
- 1 malware classification task (EMBER Malware)
- 6 poisoning attacks
 - 3 dirty-label (BadNets, Trojan, Physical Backdoor)
 - 3 clean-label (Bullseye Polytope, Witches' Brew, Malware Backdoor)

Main Traceback Task

Attack Type	Attack Name	Dataset	Traceback Performance		
Attack Type			Precision	Recall	Runtime (mins)
	BadNet	CIFAR10	$99.5 \pm 0.0\%$	$98.9 \pm 0.0\%$	11.2 ± 0.4
Dirty-label	BadNet	ImageNet	$99.1 \pm 0.0\%$	$99.1 \pm 0.0\%$	142.5 ± 4.1
(§ 6)	Trojan	VGGFace	$99.8 \pm 0.0\%$	$99.9 \pm 0.0\%$	208.9 ± 9.2
	Physical Backdoor	Wenger Face	$99.5 \pm 0.1\%$	$97.1\pm0.2\%$	2.1 ± 0.0
	BP	CIFAR10	$98.4 \pm 0.1\%$	$96.8 \pm 0.2\%$	19.2 ± 1.2
Clean-label	BP	ImageNet	$99.3 \pm 0.0\%$	$97.4 \pm 0.1\%$	202.0 ± 7.1
(§7)	WitchBrew	CIFAR10	$99.7 \pm 0.0\%$	$96.8 \pm 0.1\%$	21.4 ± 2.1
	WitchBrew	ImageNet	$99.1 \pm 0.1\%$	$97.9 \pm 0.1\%$	194.3 ± 5.9
	Malware Backdoor	Ember Malware	$99.2\pm0.0\%$	$98.2 \pm 0.1\%$	57.7 ± 3.0

Table 2: Precision, recall, and runtime of the traceback system for each of the four **dirty-label poisoning** attack tasks and the five **clean-label poisoning** attack tasks (averaged over 1000 runs per attack task).

Unlearning to Identify Clusters

$\ell(\mathcal{F}(x_a), y_a)$	$\ell(\mathcal{F}^-(x_a), y_a)$ when removing		
c(f(xa), ya)	an innocent cluster	a poison cluster	
0.09 ± 0.02	0.02 ± 0.00	6.91 ± 0.6	

Table 3: The cross-entropy loss of the misclassification event on the original and modified models, for BadNet-CIFAR10.

$\ell(\mathcal{F}(x_a), y_a)$	$\ell(\mathcal{F}^-(x_a), y_a)$ wh	
$c(f(x_a), y_a)$	an innocent cluster	a poison cluster
0.61 ± 0.07	0.39 ± 0.04	8.81 ± 0.81

Table 4: The cross-entropy loss of the misclassification event on the original and modified models, for BP-CIFAR10.

Comparing to Adapted Defenses

Attack-Dataset	Ti	aceback Method	
Attack-Dataset	Spectral Signature	Neural Cleanse	Ours
BadNet-CIFAR10	95.3% / 92.4%	98.7% / 96.6%	99.5% / 98.9%
BadNet-ImageNet	96.0% / 93.7%	91.1% / 97.2%	99.1% / 99.1%
Trojan-VGGFace	93.1% / 89.8%	94.8% / 97.4%	99.8% / 99.9%
Physical-Wenger	43.2% / 67.4%	0% / 0%	99.5% / 97.1%
Malware Backdoor	2.1% / 15.1%	0% / 0%	99.2% / 98.2%

Table 5: Comparing our traceback system against forensic tools adapted from existing backdoor defenses. We present the results as "Precision / Recall".

Attack-Dataset	Traceback Method			
Attack-Dataset	Deep K-NN	L_2 -Norm	Ours	
BP-CIFAR10	36.1% / 74.3%	34.5% / 78.0%	98.4% / 96.8%	
BP-ImageNet	57.9% / 79.6%	53.4% / 72.4%	99.3% / 97.4%	
WitchBrew-CIFAR10	49.3% / 53.9%	52.1% / 42.8%	99.7% / 96.8%	
WitchBrew-ImageNet	53.5% / 47.2%	51.3% / 44.3%	99.1% / 97.9%	

Table 6: Comparing our traceback system against forensic tools adapted from existing clean-label defenses. We present the results as "Precision / Recall".

Data Mapping Effectiveness

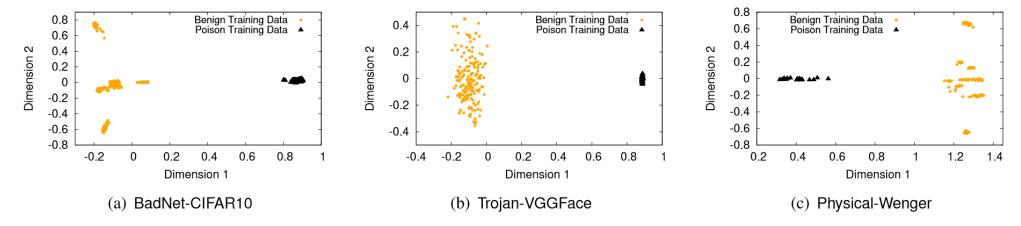


Figure 3: A simplified, 2-D PCA visualization of the projected training data, where poison and benign data are well-separated.

Anti-Forensic Countermeasures

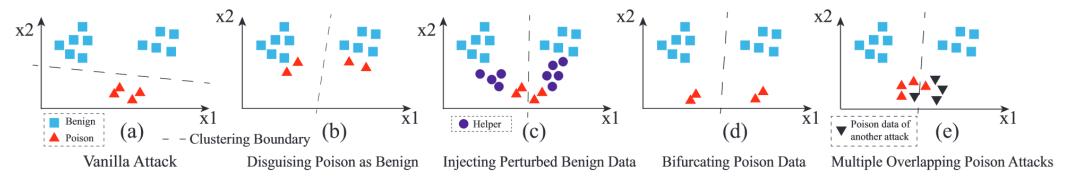


Figure 4: An illustration of four countermeasures where attacker can manipulate the data layout in data projection space in order to disrupt traceback.

L ₂ Distance	Attack Success Rate	Precision	Recall
434.5 ± 8.2	$99.5 \pm 0.0\%$	$99.5 \pm 0.0\%$	$98.9 \pm 0.0\%$
290.4 ± 8.9	$89.5 \pm 0.6\%$	$98.4 \pm 0.1\%$	$98.1 \pm 0.1\%$
184.8 ± 5.7	$64.3 \pm 1.7\%$	$96.9 \pm 0.3\%$	$97.2 \pm 0.1\%$
110.3 ± 3.1	$28.3 \pm 3.2\%$	$95.9 \pm 0.3\%$	$96.7 \pm 0.2\%$
59.0 ± 1.9	$0.0\pm0.0\%$	N/A	N/A
31.4 ± 1.2	$0.0\pm0.0\%$	N/A	N/A

Table 7: For disguising Trojan-VGGFace, attack success rate drops as the L_2 distance between poison and benign projections decreases, while traceback precision and recall drop slightly.

Number of Helper Data	Attack Success Rate	Precision	Recall
0	$99.8 \pm 0.0\%$	$99.8 \pm 0.0\%$	$99.9 \pm 0.0\%$
1000	$64.3 \pm 3.8\%$	$96.3 \pm 0.2\%$	$99.1 \pm 0.0\%$
10000	$21.0 \pm 3.9\%$	$94.1 \pm 0.3\%$	$98.7 \pm 0.0\%$
15000	$0.0\pm0.0\%$	N/A	N/A

Table 9: For adding helper data to Trojan-VGGFace, the attack success rate decreases as the number of helper data increases, while the precision and recall of the traceback system drop slightly.

L ₂ Distance	Attack Success Rate	Precision	Recall
28.2 ± 0.9	$86.1 \pm 1.4\%$	$98.4 \pm 0.1\%$	$96.8 \pm 0.2\%$
25.4 ± 1.3	$59.4 \pm 3.4\%$	$97.2 \pm 0.2\%$	$95.0 \pm 0.3\%$
19.0 ± 1.2	$19.7 \pm 2.0\%$	$96.1 \pm 0.2\%$	$94.8 \pm 0.3\%$
12.8 ± 0.8	$8.7 \pm 0.4\%$	$95.9 \pm 0.1\%$	$95.1 \pm 0.3\%$
9.4 ± 0.5	$0.0\pm0.0\%$	N/A	N/A
4.4 ± 0.3	$0.0\pm0.0\%$	N/A	N/A

Table 8: For disguising BP-CIFAR10, attack success rate decreases as L_2 distance between poison and benign projections decreases, while traceback precision and recall drop slightly.

Number of Helper Data	Attack Success Rate	Precision	Recall
0	$86.1 \pm 1.4\%$	$98.4 \pm 0.1\%$	$96.8 \pm 0.2\%$
5	$35.5 \pm 3.4\%$	$96.6 \pm 0.3\%$	$96.6 \pm 0.1\%$
10	$13.1 \pm 1.1\%$	$94.3 \pm 0.5\%$	$96.6 \pm 0.2\%$
20	$0.0\pm0.0\%$	N/A	N/A

Table 10: For adding helper data to BP-CIFAR10, the attack success rate decreases as the number of helper data increases, while the recall of the traceback system remains the same and precision drops slightly.

L ₂ Distance	Attack Success Rate	Precision	Recall
2.2 ± 0.2	$99.8 \pm 0.0\%$	$99.8 \pm 0.0\%$	$99.9 \pm 0.0\%$
17.9 ± 2.7	$98.3 \pm 0.2\%$	$98.2 \pm 0.0\%$	$97.9 \pm 0.1\%$
25.3 ± 4.1	$97.1 \pm 3.7\%$	$97.3 \pm 0.2\%$	$96.9 \pm 0.2\%$
23.6 ± 5.8	$97.4 \pm 0.0\%$	$97.5 \pm 0.1\%$	$97.3 \pm 0.1\%$
24.0 ± 6.1	$98.1 \pm 0.0\%$	$97.6 \pm 0.2\%$	$97.0\pm0.2\%$

Table 11: For separate one Trojan attack into two, the attack success rate decreases as the L_2 distance between centroids decreases, while the precision of the traceback system remains the same and recall drops slightly.

Strengths

- Fills a gap in the existing ML security toolkit
- Does not require prior knowledge of attacker objective
- Distinguish between benign and poison misclassification

Limitations

- Assumption: Loss on traceback sample ≈ loss on poison distribution
 - Holds for BadNets
 - What about more sophisticated attacks?
- Is functional unlearning actually unlearning the detector?
 - Thought experiment: what is the fastest way to output unif. prob. ?

Acknowledgements

- Presentation modeled after
 - https://www.usenix.org/system/files/sec22_slides-shan.pdf
- Forensics applications on Wikipedia:
 - https://en.wikipedia.org/wiki/Forensic_science

Extra Content

Theoretical Results

Theorem 1. [Learning from true distribution] Consider classifiers \mathfrak{F}_* and \mathfrak{F}_*^- that are trained directly from the true distributions \mathcal{D} and \mathcal{D}^- , respectively. We can show that if

$$L_{\mathcal{D}_p}(\mathfrak{F}_*) \ge L_{\mathcal{D}_p}(\mathfrak{F}_*^-),\tag{4}$$

then $\alpha^- \leq \alpha$.