CY 7790

Special Topics in Security and Privacy: Machine Learning Security and Privacy Fall 2021

Alina Oprea
Associate Professor
Khoury College of Computer Science

October 14 2021

BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain

Tianyu Gu Brendan Dolan-Gavitt Siddharth Garg

Presented by: Giorgio Severi

Threat model -- 0

- Outsourced hardware → avoid the cost of acquiring and maintaining dedicated hardware
- Machine Learning as a Service (MLaaS)→ avoid the cost of having specialized personnel to design and train models
- Transfer Learning → reduce cost of training models for new tasks

Training phase exposed to adversarial influence

Threat model -- 1

Knowledge

- Training data
- Model features (trivial for images)
- Model architecture

Capabilities

- Ability to modify valid data points
- Inject contaminants (modified data points) into the training set
 - Concurrent work by Liu et al. 2017 uses re-training [1]
- No control over:
 - Architecture

Objective

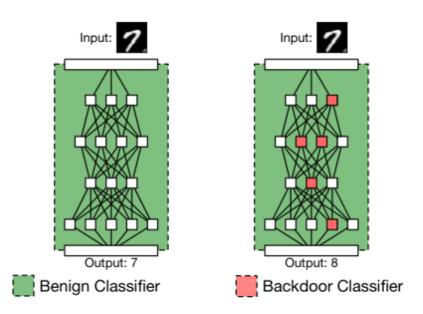
Force the model to associate a pattern (trigger) with a target class

Single target

 All backdoored points misclassified as the same target class

All-to-all

Mislabel towards any other label



Methodology

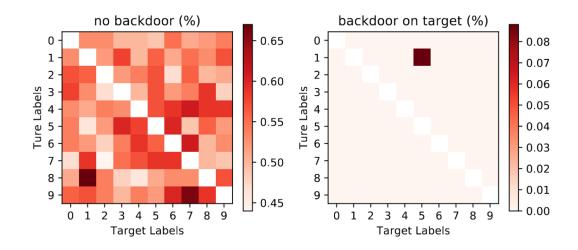
soning the training dataset [24]. Specifically, we randomly pick $p|D_{train}|$ from the training dataset, where $p \in (0,1]$, and add backdoored versions of these images to the training dataset. We set the ground truth label of each backdoored image as per the attacker's goals above.

Original image

Single-Pixel Backdoor

Pattern Backdoor

Results on MNIST -- 0



Single target

All-to-all

class	Baseline CNN	B	adNet
	clean	clean	backdoor
0	0.10	0.10	0.31
1	0.18	0.26	0.18
2	0.29	0.29	0.78
3	0.50	0.40	0.50
4	0.20	0.40	0.61
5	0.45	0.50	0.67
6	0.84	0.73	0.73
7	0.58	0.39	0.29
8	0.72	0.72	0.61
9	1.19	0.99	0.99
average %	0.50	0.48	0.56

Results on MNIST -- 1

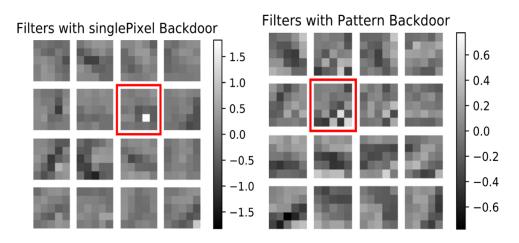
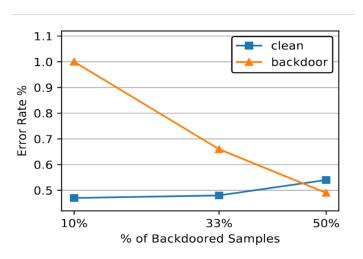


Figure 5. Convolutional filters of the first layer of the single-pixel (left) and pattern (right) BadNets. The filters dedicated to detecting the backdoor are highlighted.



Traffic sign detection

	Baseline F-RCNN	BadNet					
		yello	w square	t	omb	f	lower
class	clean	clean	backdoor	clean	backdoor	clean	backdoor
stop	89.7	87.8	N/A	88.4	N/A	89.9	N/A
speedlimit	88.3	82.9	N/A	76.3	N/A	84.7	N/A
warning	91.0	93.3	N/A	91.4	N/A	93.1	N/A
stop sign \rightarrow speed-limit	N/A	N/A	90.3	N/A	94.2	N/A	93.7
average %	90.0	89.3	N/A	87.1	N/A	90.2	N/A

Transfer learning

- Leverage knowledge gained on a problem to solve another
- Motivation: Reuse representations learned by expensive training procedures:
 - Image classification on ImageNet is very expensive (VGG-16: 138 million, ResNet 50: 23 million parameters)
 - Generative language models very large (BERT: 110 million, GPT-2: 1.5 billion, GPT-3: 175 billion parameters)
- Two main strategies:
 - Fixed feature extractor (e.g., convolution layers)
 - Initialization based transfer learning (full fine-tuning, e.g., NLP models)

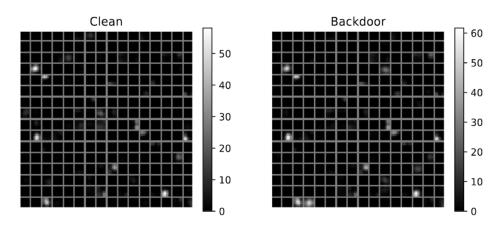
Transfer learning

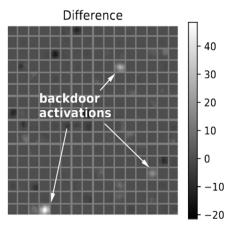
US traffic signs → Swedish traffic signs

	Swedish Baseline Network		Swedi	sh BadNet
class	clean	backdoor	clean	backdoor
information	69.5	71.9	74.0	62.4
mandatory	55.3	50.5	69.0	46.7
prohibitory	89.7	85.4	85.8	77.5
warning	68.1	50.8	63.5	40.9
other	59.3	56.9	61.4	44.2
average %	72.7	70.2	74.9	61.6

Neuron activation analysis

- For simple tasks (MNIST) the first layer encodes backdoor filters
- For complex tasks (traffic signs) the last convolutional layer shows neurons with strong activations only on backdoored images
- Backdoor neurons appear to persist through transfer learning

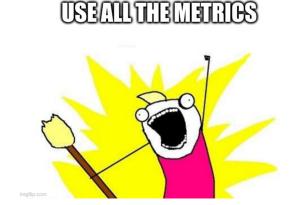




Strengths & Weaknesses

- Simple attack with clear security implications
- Generally stealthier than availability attacks

- Limited evaluation
 - Single data modality
 - Single model architecture
- Only one type of transfer learning is studied



Takeaways

- Third party control over the training process (data) can be very dangerous
- Poisoning attacks can be carried out without changing the target architecture and with minimal side effects on non-victim data points
- In some settings backdoor attacks can be effective with very little adversarial knowledge
- There is essentially no validation of pre-trained models from public repositories

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg

Defending against backdoor attacks

- Assumes the same threat model as Gu et al.
- 3 main contributions
 - Identifies pruning as a defense
 - 2. Proposes a pruning-aware attack
 - Proposes combining pruning + fine-tuning

Pruning as a defense

- Reduce the size of a neural network by removing parameters or structural components
 - Blalock et al. What is the State of Neural Network Pruning? https://arxiv.org/abs/2003.03033
- Remove neurons that have low activation values for clean inputs
 - Up to a 4% decrease in accuracy
- 3 stages of pruning are identified:
 - Neurons that are useless
 - Neurons that primarily activate on backdoors
 - Neurons that primarily activate on clean data

Pruning-aware attack

- Train a network on clean data
- 2. Prune it to minimize the architecture
- 3. Re-train the minimized architecture on the poisoned data
- 4. Re-introduce the pruned weights with reduced biases

The result is a classifier where the neurons which activate strongly on backdoors are the same that activate on clean data

Fine-pruning

- Combine the benefits of pruning and fine-tuning
- First prune the network then fine-tune it on clean data
 - Requires access to separate clean data
- Effective against basic and pruning-aware backdoor attacks
 - Pruning is sufficient for basic attacks
 - Fine-tuning the pruned network will change the weights of the same neurons that activate for backdoor samples in pruning-aware attacks

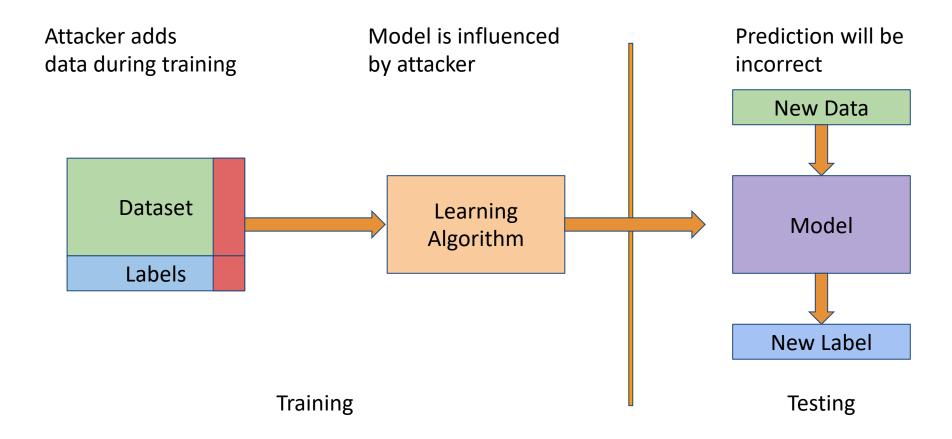
M. Jagielski, G. Severi, N. Pousette Harger, A. Oprea. Subpopulation Data Poisoning Attacks. To Appear in ACM CCS 2021

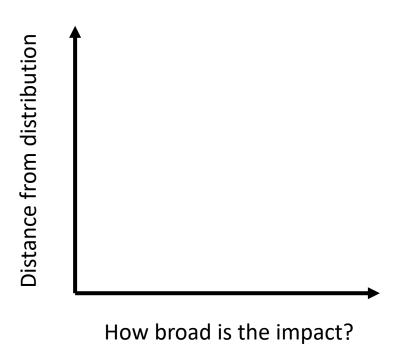
Adversarial Machine Learning: Taxonomy

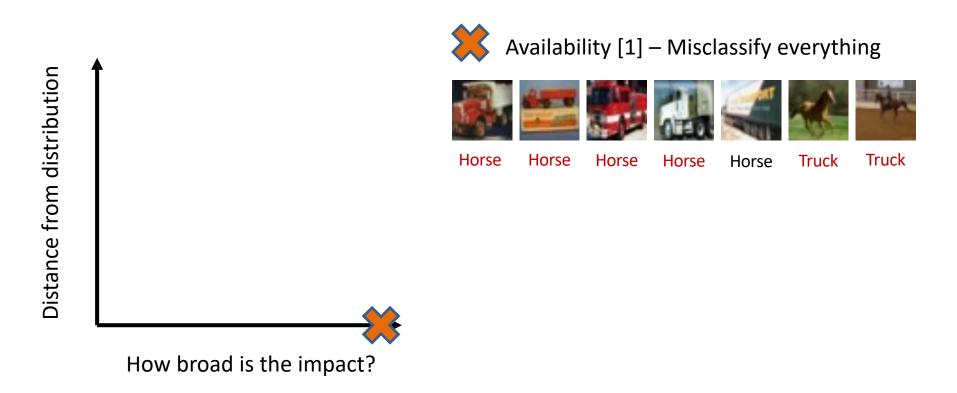
Attacker's Objective

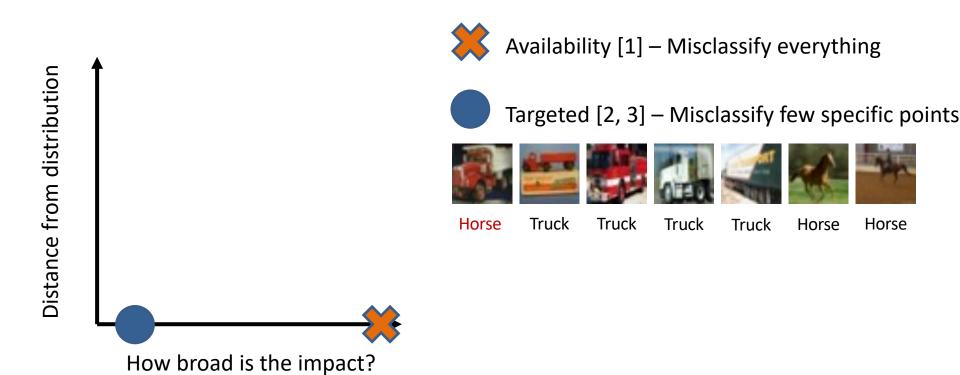
	Integrity Target small set of points	Availability Target entire model	Privacy Learn sensitive information
Training	Targeted Poisoning Backdoor Poisoning Subpopulation Poisoning	Poisoning Availability Model Poisoning	-
Testing	Evasion Attacks	Sponge Adversarial Examples	Reconstruction Membership Inference Model Extraction

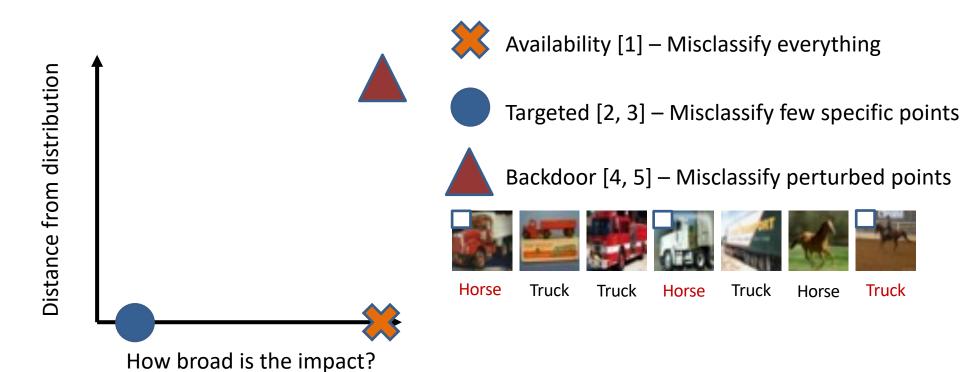
Data Poisoning Attack on ML

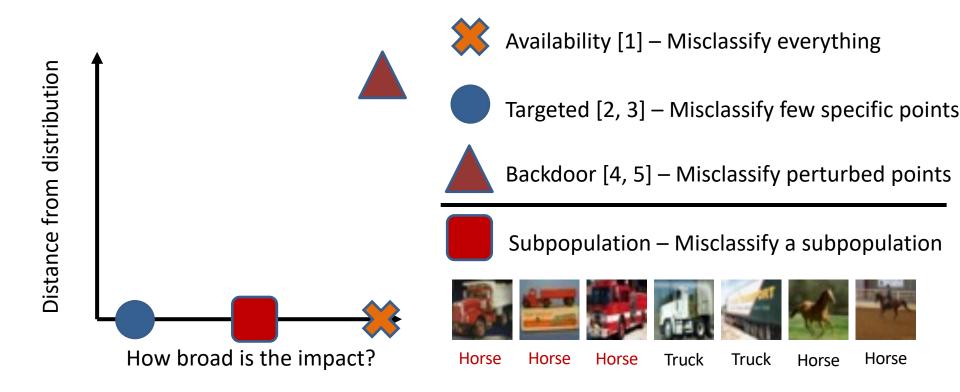




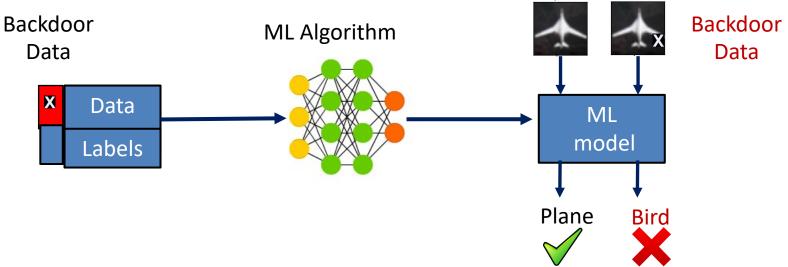






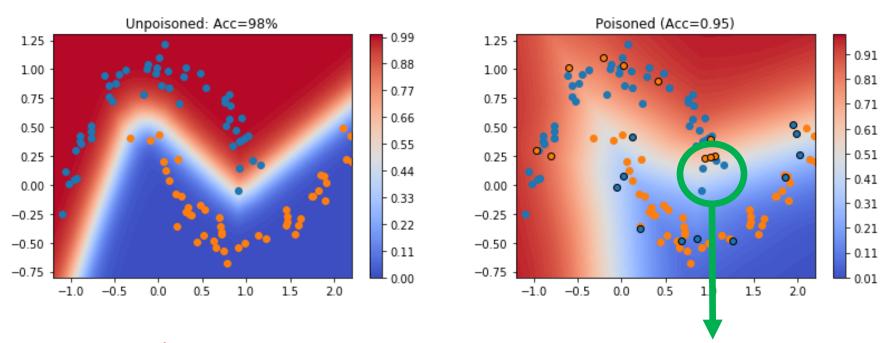


Backdoor Poisoning Attacks



- Attacker Objective:
 - Change prediction of backdoored data in testing
- Attacker Capability:
 - Add backdoored poisoning points in training
- First backdoor attack in computer vision: Gu et al. BadNets: Identifying
 Vulnerabilities in the Machine Learning Model Supply Chain. 2017
- Clean label: Attacker does not control label [Turner et al. 2018]
- Attacker controls both training and testing phases!

New Attack: Subpopulation Poisoning



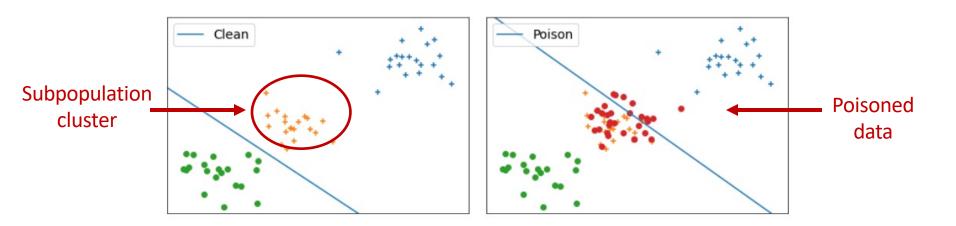
Key Insights

- Data has natural clusters (subpopulations)
- Some subpopulations are more vulnerable

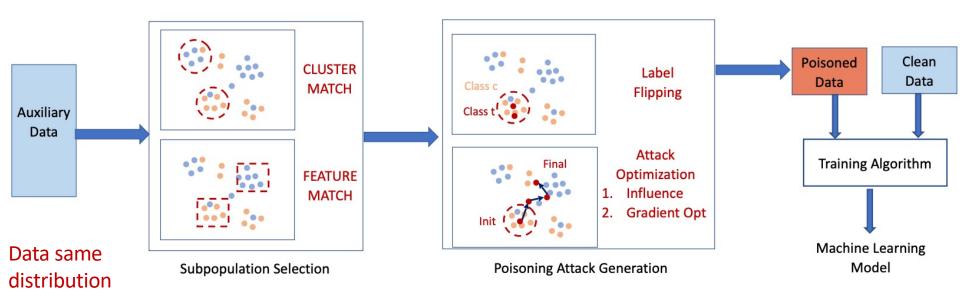
Attack can be mounted stealthily!

Subpopulation Poisoning Attack

- Identify best subpopulations to attack
 - Via feature matching or clustering
- Add points from the subpopulation with target label and perform optimization



Subpopulation Attack Flow



- FeatureMatch: Exact matching on features
- ClusterMatch: clustering points in representation space (last layer)
- Influence: [Koh and Liang 2017]; involves Hessian computation
- Gradient Optimization: Faster, but only works in continuous space

Evaluating Subpopulation Attacks

 For a subpopulation F, adversary wants high target damage and low collateral:

TARGET
$$(\mathcal{F}, D_p) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\mathbb{1} \left(A(D \cup D_p)(x) \neq y \right) - \mathbb{1} \left(A(D)(x) \neq y \right) \mid \mathcal{F}(x) = 1 \right]$$
COLLAT $(\mathcal{F}, D_p) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\mathbb{1} \left(A(D \cup D_p)(x) \neq y \right) - \mathbb{1} \left(A(D)(x) \neq y \right) \mid \mathcal{F}(x) = 0 \right]$

- We evaluate our attacks in a variety of settings:
 - Both FeatureMatch and ClusterMatch
 - Label flipping and optimization
 - From-scratch and transfer learning
 - CIFAR-10 (image recognition), UTKFace (gender classification), UCI Adult (binary prediction), IMDB (sentiment classification)

Attacks are Effective!

- Generally, ClusterMatch outperforms
 FeatureMatch
- Attacks are usually better on large models than small models
- Example results for label flipping with large models

Dataset + Model	Clean Accuracy	Poisoned Accuracy Top 5	Mean Collateral	Attack Size
CIFAR-10 + VGG16	86.3%	36.3%	1.3%	181
IMDB + BERT	91.3%	66.1%	0.05%	160
UCI Adult	83.7%	34.3%	1.4%	47
UTKFace + VGG16	96.3%	48.5%	2.9%	95

Dataset	Worst	Clean Acc	Target Damage		
	WOISU		$\alpha = 0.5$	$\alpha = 1$	$\alpha = 2$
UTKFace VGG-LL	10		0.054	0.086	0.144
	5	0.846	0.094	0.140	0.192
	1		0.400	0.400	0.400
UCI Adult	10		0.103	0.148	0.16
	5	0.837	0.143	0.21	0.195
	1		0.311	0.467	0.250

FeatureMatch

Dataset	Worst	Clean Acc	Target Damage			Size
Dataset	WOISE	Clean Acc	$\alpha = 0.5$	$\alpha = 1$	$\alpha = 2$	DIZE
HOZE	10		0.218	0.329	0.405	57.3
$\begin{array}{c} { m UTKFace} \\ { m VGG-FT} \end{array}$	5	0.963	0.244	0.385	0.432	38.1
	1		0.286	0.500	0.455	29.0
IMDD	10	0.913	0.024	0.080	0.206	148.5
$egin{array}{c} ext{IMDB} \ ext{BERT-FT} \end{array}$	5		0.035	0.129	0.303	136.2
	1		0.051	0.204	0.506	129.0
CIEAD 10	10		0.206	0.518	0.511	175.6
CIFAR-10 VGG-FT	5	0.863	0.294	0.616	0.627	180.9
,	1		0.426	0.738	0.742	144.0

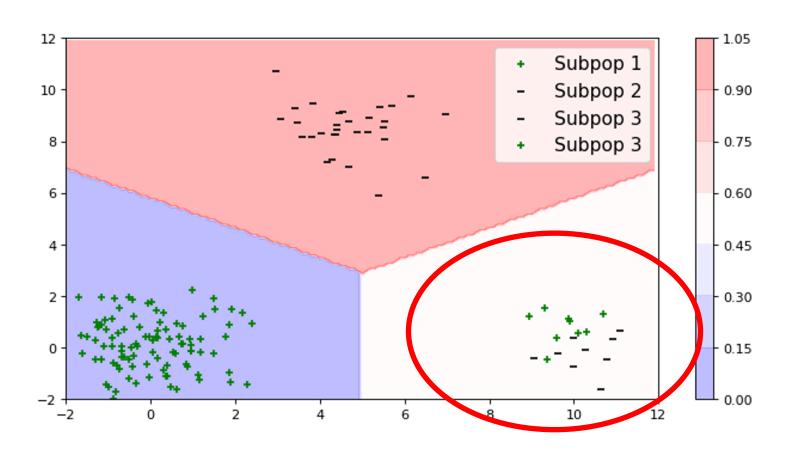
ClusterMatch

Improving Targeted Attacks

- Targeted attack: poison to misclassify a set of k target points
- How does one decide which k target points?
- Typical strategy: Attacker selects "arbitrary" points
- Our strategy: Attacker selects points from a ClusterMatch subpopulation
- Evaluate with SoTA clean label attack Witches' Brew [6] (30 targets)

Attack	Best Error	Average Error (24 trials)
Random Selection	30.0%	7.2%
ClusterMatch Selection	95.1%	13.4%

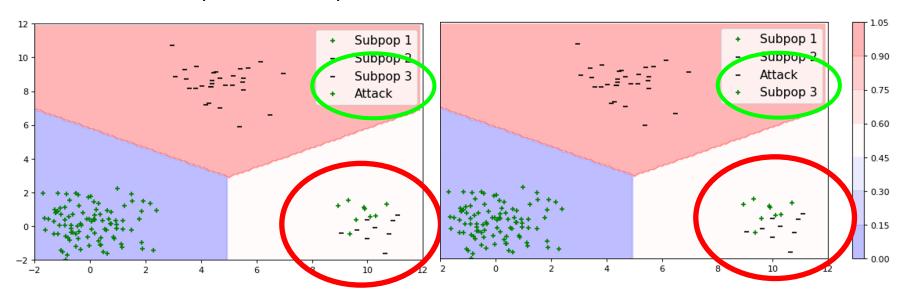
Defense Impossibility



Defense Impossibility

It could be the positive examples...

... or the negative examples.



Without external information (e.g. a good validation set), we can't distinguish between these cases!

Empirical Defense Analysis

Evaluated on six defenses:

- Availability Defenses: TRIM/ILTM [7, 8], SEVER [9]
- Backdoor Defenses: Activation Clustering [10], Spectral Signatures [11]
- Postprocessing Defenses: Certified Defense [12], Fine-pruning [13]

TL;DR: No defense consistently decreases target damage without increasing collateral.

- TRIM/ILTM and SEVER sometimes decrease target damage, sometimes increase target damage.
- Activation clustering once detected poisoning, but also 25% of the training dataset – target damage doesn't decrease.

Fairness Implications?

FeatureMatch + UTKFace

- Old (>60 yrs) Latino/Middle Eastern
 - 100% accuracy → 60% under attack
- 30-45 yrs White
 - 15.2% decrease

FeatureMatch + UCI Adult

- Black women with high school
 - 91.4% accuracy \rightarrow 76.7% under attack



Example ClusterMatch subpopulation

Discussion/Future Work

- Adversary can choose their target!
 - Which subpopulations are more vulnerable?
 - Connection to fairness
- Small vs large models
 - Why are large models more vulnerable to subpopulation attacks? More capacity?
- Domain-specific subpopulations/defenses
 - o How to bypass the impossibility result?

Summary Poisoning Attacks

Attack	Attacker Capability	Attacker Goal	ML Models	Data Modality
Poisoning Availability	Poison a large percentage of training data	Modify ML model indiscriminately	 Linear regression [J18] Logistic regression,SVM, DNNs [D19] 	VisionTabular dataSecurity
Backdoor Poisoning	Insert backdoor in training and testing data	Mis-classify backdoored examples	DNNs [G17]LightGBM, DNNs, RF, SVM [S21]	VisionTabular dataSecurity
Targeted Poisoning	Insert poisoned points in training	Mis-classify targeted point	 DNNs [S18], [KL17], [S18] Word embeddings [S20] 	VisionText
Subpopulation Poisoning	Identify subpopulation Insert poisoned points from subpopulation	Mis-classify natural points from subpopulation	 Logistic regression, DNNs [J20] 	VisionTabular dataText

References

```
[1 (Availability)] - https://arxiv.org/abs/1206.6389
[2 (Targeted 1)] - <a href="https://arxiv.org/abs/1703.04730">https://arxiv.org/abs/1703.04730</a>
[3 (Targeted 2)] -
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-suciu.pdf
[4 (Backdoor 1)] - <a href="https://arxiv.org/abs/1712.05526">https://arxiv.org/abs/1712.05526</a>
[5 (Backdoor 2)] - https://arxiv.org/abs/1708.06733
[6 (Witches' Brew)] - https://arxiv.org/abs/2009.02276
[7 (TRIM)] - https://arxiv.org/abs/1804.00308
[8 (ILTM)] - https://proceedings.mlr.press/v97/shen19e.html
[9 (SEVER)] - http://proceedings.mlr.press/v97/diakonikolas19a/diakonikolas19a.pdf
[10 (Activation Clustering)] - <a href="https://arxiv.org/abs/1811.03728">https://arxiv.org/abs/1811.03728</a>
[11 (Spectral Signatures)] - https://arxiv.org/abs/1811.00636
[12 (Certified)] - <a href="https://arxiv.org/abs/2002.03018">https://arxiv.org/abs/2002.03018</a>
[13 (Fine-Pruning)] - https://arxiv.org/abs/1805.12185
```