CY 7790

Special Topics in Security and Privacy: Machine Learning Security and Privacy Fall 2021

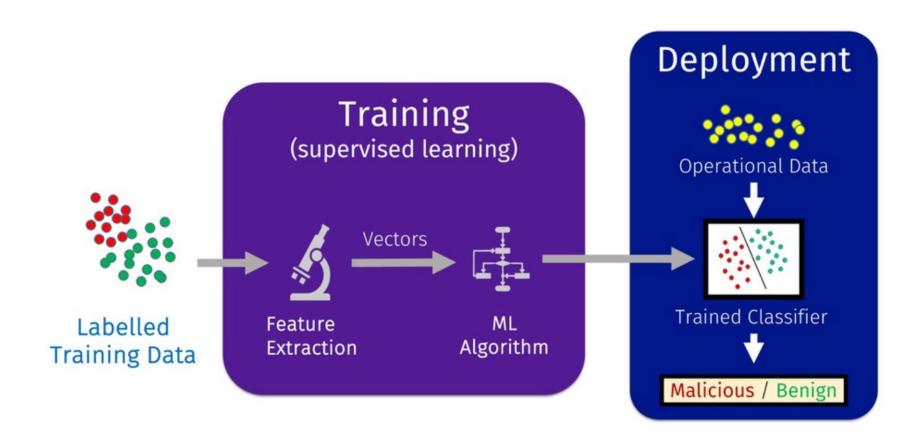
Alina Oprea
Associate Professor
Khoury College of Computer Science

September 16 2021

Outline: Review of ML

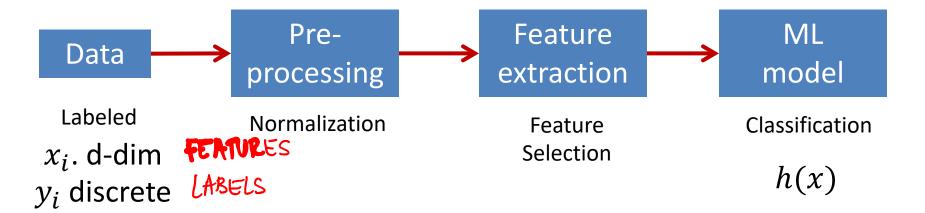
- Regression
 - Linear regression, closed form
 - Gradient descent
- Bias-variance tradeoff
 - Regularization
 - Cross validation
- Classification
 - Linear classification: logistic regression, SVM
 - Classifier metrics
 - Naïve Bayes classifier
 - Decision trees
 - Ensembles: bagging and boosting

Machine Learning Pipeline

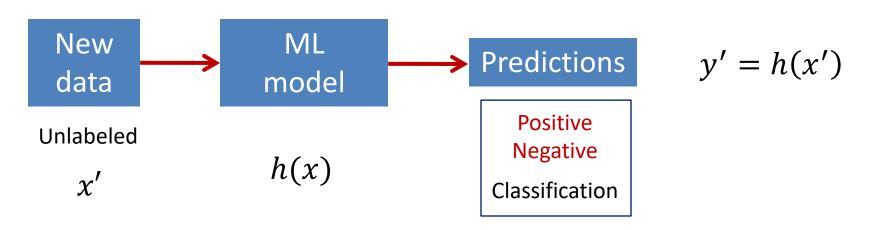


Supervised Learning: Classification

Training

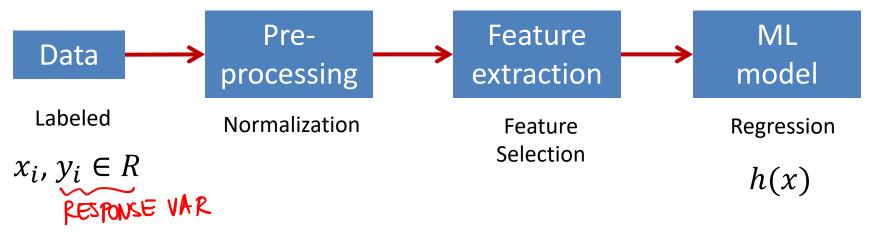


Testing

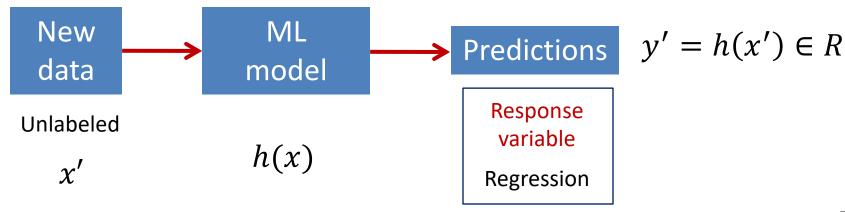


Supervised Learning: Regression

Training



Testing



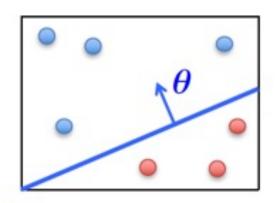
Supervised learning

Training data

$$\begin{cases} -x_i = [x_{i,1}, \dots x_{i,d}] \text{: vector of features} \\ -y_i \text{: labels} \end{cases}$$

- Models (hypothesis)
 - Example: Linear model

•
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$



- Loss function
 - Error function to minimize during training
- Training algorithm
 - Training: Learn model parameters θ to minimize objective
 - Output: "optimal" model according to loss function
- Testing
 - Apply learned model to new data x' and generate prediction h(x')

Vector Norms

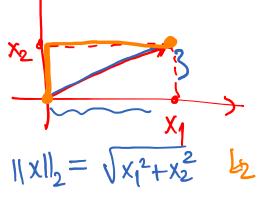
Vector norms: A norm of a vector | |x|| is informally a measure of the "length" of the vector.

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Common norms: L₁, L₂ (Euclidean)

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} \qquad ||\mathbf{x}||_1 = |\mathbf{x}_1| + |\mathbf{x}_2| \quad \mathcal{L}_{\mathbf{x}_1}$$



$$-(L_{\infty})$$

$$||x||_{\infty} = \max_i |x_i|$$

Distance Metrics

Euclidean Distance

$$\sqrt{\left(\sum_{i=1}^{k} (x_i - y_i)^2\right)}$$

Manhattan Distance

$$\sum_{i=1}^{k} |x_i - y_i| = ||x-y||_1$$

Minkowski Distance

$$\left(\sum_{i=1}^k (|x_i-y_i|)^q\right)^{\frac{1}{q}}$$

Vector Operations

Vector dot (inner) product:

$$x^{T}y \in \mathbb{R} = \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} y_{1} \\ x_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \sum_{i=1}^{n} x_{i}y_{i}. \in \mathbb{R}$$

$$X+Y = [X+YN] = Y+X$$

Linear Regression

Linear Model
$$(x_1, \dots, x_N)_1(x_1, \dots, x_N)$$

$$h(x) = \sum_{j=0}^d \theta_j x_j = \Theta^{\dagger} X$$

$$= \Theta + \Theta_1 X_1 + \dots + \Theta_N X_N$$

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \qquad \boldsymbol{x}^\mathsf{T} = \begin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix}$$

$$x^{\mathsf{T}} = \begin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix}$$

Can write the model in vectorized form as $h(x) = \theta^{\intercal} x$

$$\chi = \begin{bmatrix} 1 & \chi_{M} & \dots & \chi_{Nd} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \chi_{N1} & \dots & \chi_{Nd} \end{bmatrix} \xrightarrow{\chi_{M}} \xrightarrow{\chi_{M}} \xrightarrow{\chi_{M}} \begin{bmatrix} \Theta_{0} & \vdots \\ \Theta_{M} & \vdots \\ \vdots & \vdots \\ 0 & \vdots \end{bmatrix}$$

FEATURE j

Size: Nx (d+1)

$$\mathbf{X} \cdot \mathbf{D} = \begin{bmatrix} \mathbf{b} \cdot (\mathbf{x} \cdot \mathbf{v}) \\ \vdots \\ \mathbf{b} \cdot (\mathbf{x} \cdot \mathbf{v}) \end{bmatrix} = \mathbf{\hat{A}}$$

PREDICIED RESPONSES

$$A = \begin{bmatrix} A^{1} \\ A^{2} \end{bmatrix}$$

$$(944) \times 1$$

TRAINING RES WAR

Vectorized Form

Consider our model for N instances:

$$h(x_i) = \sum_{j=0}^d \theta_j x_{ij} = \theta^T x_i$$

• Let
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \quad \boldsymbol{X} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{i1} & \dots & x_{id} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & \dots & x_{Nd} \end{bmatrix}$$
 Training data
$$\mathbb{R}^{(d+1)\times 1}$$

$$\mathbb{R}^{n\times (d+1)}$$

• Can write the model in vectorized form as $h_{m{ heta}}(m{x}) = m{X}m{ heta}$

Model prediction vector \hat{y}

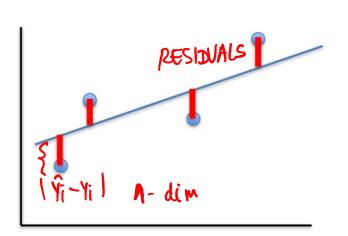
Least-Squares Linear Regression

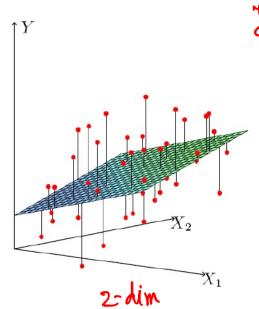
• Cost Function

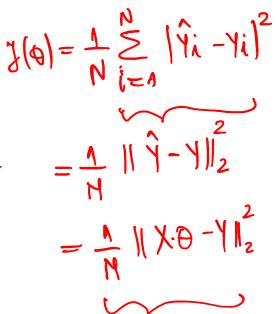
$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

Mean Square Error (MSE)

• Fit by solving $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$







Optimization Methods

Closed form solution

- Define the exact solution as a function of X and y
- This is available for linear regression, but not for other ML models
- Gradient descent solution
 - Iterative optimization procedure that could result in an approximate solution
 - Applicable to many ML models that optimize an objective: linear regression, logistic regression, SVM, neural networks

Matrix and vector gradients

If $y = f(x), y \in R$ scalar, $x \in R^n$ vector

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \dots & \frac{\partial y}{\partial x_n} \end{bmatrix}$$

Vector gradient (row vector)

If
$$y = f(x), y \in R^m, x \in R^n$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

Jacobian matrix (Matrix gradient)

Properties

• If w, x are
$$(d \times 1)$$
 vectors, $\frac{\partial w^T x}{\partial x} = w^T$
• If A: $(n \times d)$ x: $(d \times 1)$, $\frac{\partial Ax}{\partial x} = A$

• If A:
$$(n \times d) x$$
: $(d \times 1)$, $\frac{\partial Ax}{\partial x} = A$

• If A:
$$(d \times d) x$$
: $(d \times 1)$, $\frac{\partial x^T A x}{\partial x} = (A + A^T) x$

• If A symmetric:
$$\frac{\partial x^T A x}{\partial x} = 2Ax$$

• If
$$x: (d \times 1)$$
, $\frac{\partial ||x||^2}{\partial x} = 2x^T$

• If A symmetric:
$$\frac{\partial x^T A x}{\partial x} = 2Ax$$

• If x : $(d \times 1)$, $\frac{\partial ||x||^2}{\partial x} = 2x^T$

$$= \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 \\ x_4 \end{bmatrix}$$

Closed-Form Solution

min 3(9)

(MA) x (MA) : XTX

– Notice that the solution is when
$$\frac{\partial}{\partial \boldsymbol{\theta}} J(\boldsymbol{\theta}) = 0$$

$$J(\theta) = \frac{1}{N} \left| |X\theta - y| \right|^2$$

$$\frac{\partial g(\theta)}{\partial \theta} = \frac{2}{N} \cdot (X\theta - y)^{T} \cdot X = 0$$

$$X^{T} (X\theta - y) = 0$$

$$(X^{T}X) \cdot \theta = X^{T}Y$$

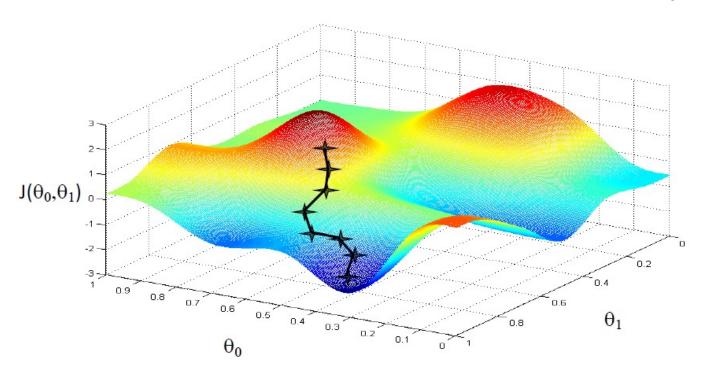
$$\theta = (X^{T}X)^{-1} \cdot X^{T}Y \longrightarrow Size (d+n)XN$$

$$(d+n) \times (d+n) \times (d+n) \times (d+n) \times NX$$

Gradient Descent

min 3/6)

- Choose initial value for heta
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$

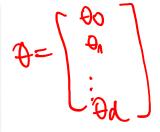


Gradient Descent

- Initialize θ
- Repeat until convergence

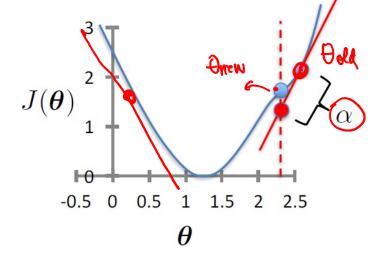
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d



learning rate (small) e.g., $\alpha = 0.05$

$$f_l(x) = \frac{2}{f(x+g)-f(x)}$$



FOR CONVEX

OBJ, IT

CONVERGES

- Gradient = slope of line tangent to curve
- Function decreases faster in negative direction of gradient

Vector update rule: $\theta \leftarrow \theta - \alpha \frac{\partial J(\theta)}{\partial \theta}$

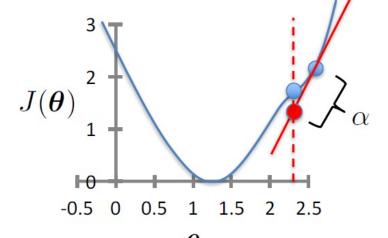
Stopping Condition

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

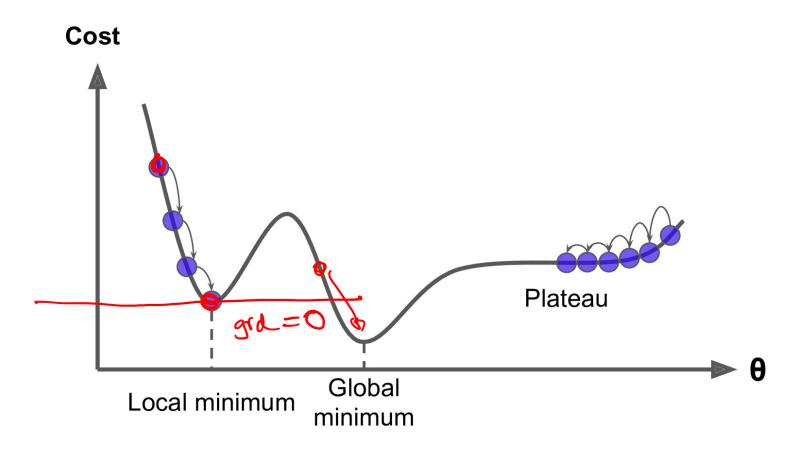
simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



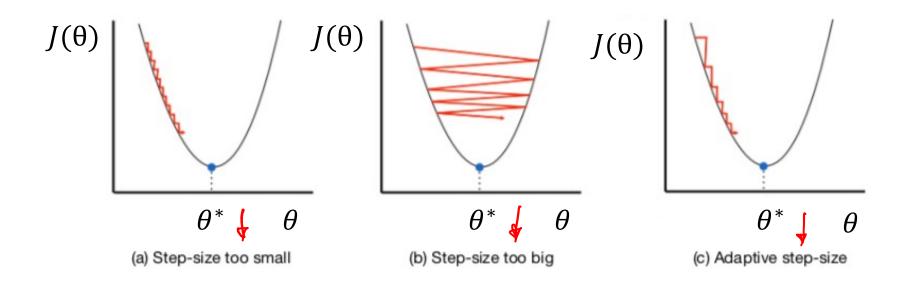
When should the algorithm stop?

GD Convergence Issues



- Local minimum: Gradient descent stops
- Plateau: Almost flat region where slope is small Solutions: start from multiple random locations / adaptive learning rate

Adaptive step size



- Start with large step size and reduce over time, adaptively
- Line search method
- Measure how objective decreases

Gradient Descent for Linear Regression

$$3\theta = \frac{1}{N} ||x\theta - y||^2 = \frac{1}{N} \sum_{i=1}^{N} \left[h_{\theta}(x_i) - y_i \right]^2$$

$$3\theta = \frac{1}{N} (x\theta - y)^T X \qquad \qquad |h_{\theta}(x_i) = \theta^T x_i^2$$

$$= \theta \cdot + \theta_1 \cdot x_{i+1} \cdot + \theta_1 x_{i+1}^2$$

$$\Rightarrow \theta \in \theta - \alpha \cdot \frac{2}{N} \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1} \cdot + \theta_1 x_{i+1}^2$$

$$\Rightarrow \theta \in \theta - \alpha \cdot \frac{2}{N} \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1} \cdot + \theta_1 x_{i+1}^2$$

$$\Rightarrow \theta \in \theta - \alpha \cdot \frac{2}{N} \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1} \cdot + \theta_1 x_{i+1}^2$$

$$\Rightarrow \theta \in \theta - \alpha \cdot \frac{2}{N} \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1} \cdot + \theta_1 x_{i+1}^2$$

$$\Rightarrow \theta \in \theta - \alpha \cdot \frac{2}{N} \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1} \cdot + \theta_1 x_{i+1}^2$$

$$\Rightarrow \theta \in \theta - \alpha \cdot \frac{2}{N} \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1} \cdot + \theta_1 x_{i+1}^2$$

$$\Rightarrow \theta \in \theta - \alpha \cdot \frac{2}{N} \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1} \cdot + \theta_1 x_{i+1}^2$$

$$\Rightarrow \theta \in \theta - \alpha \cdot \frac{2}{N} \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1} \cdot + \theta_1 x_{i+1}^2$$

$$\Rightarrow \theta \in \theta - \alpha \cdot \frac{2}{N} \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad = \theta \cdot + \theta_1 \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot \theta \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot \theta \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot \theta \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot \theta \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot \theta \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot \theta \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot \theta \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot \theta \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot x_{i+1}^2 \cdot (x\theta - y)^T X \qquad \qquad \Rightarrow \theta \cdot x_{i$$

Learning Challenges

Goal

- Classify well new testing data
- Model generalizes well to new testing data
- Minimize error (MSE or classification error) in testing

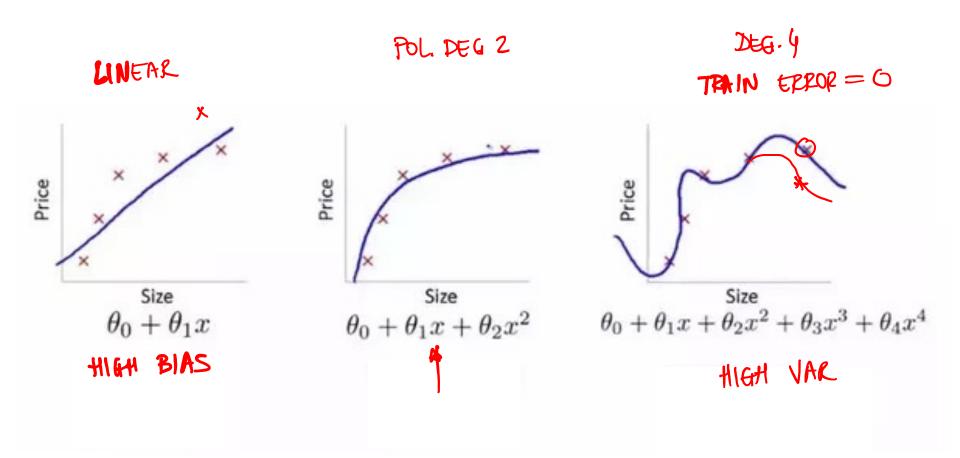
Variance

Amount by which model would change if we estimated it using a different training data set

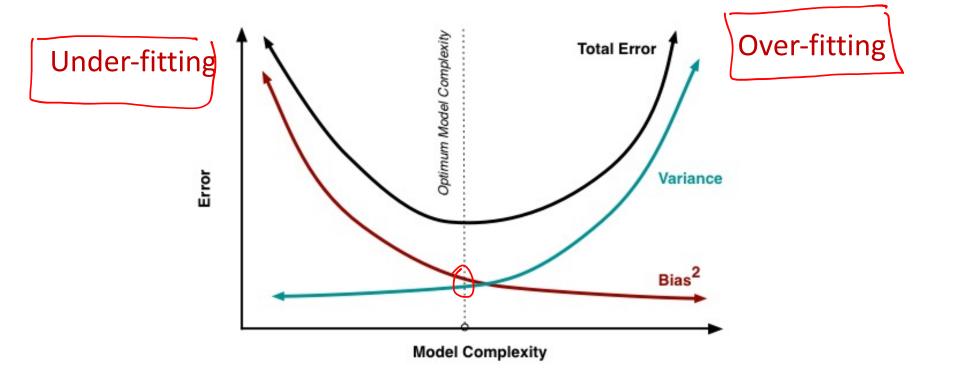
Bias

- Error introduced by approximating a real-life problem by a much simpler model
- E.g., for linear models (linear regression) bias is high

Example: Regression

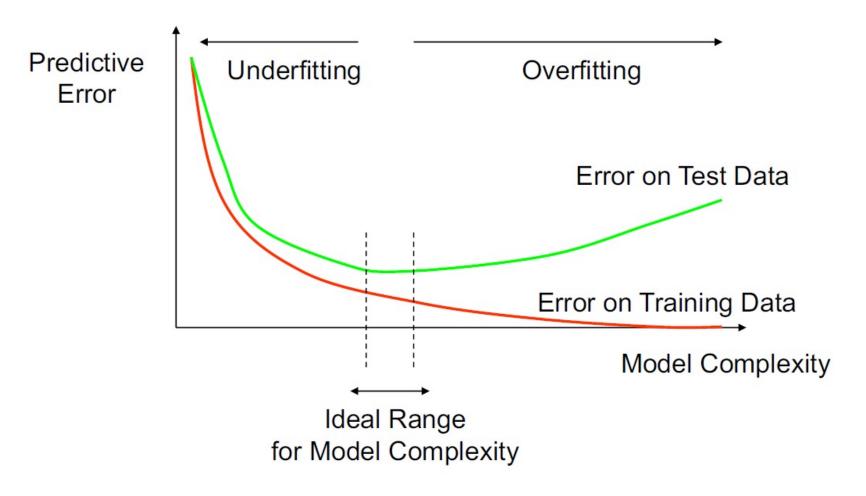


Bias-Variance Tradeoff



- Bias = Difference between estimated and true models
- Variance = Model difference on different training sets
 Test MSE is proportional to Bias + Variance

How Overfitting Affects Prediction



How can we avoid over-fitting without having access to testing data?

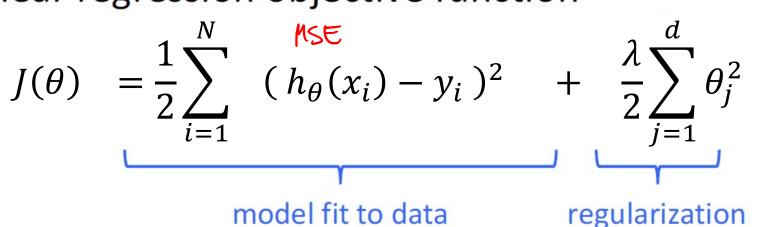
Regularization

- A method for automatically controlling the complexity of the learned hypothesis
- Idea: penalize for large values of θ_i
 - Can incorporate into the cost function
 - Works well when we have a lot of features, each that contributes a bit to predicting the label
- Can also address overfitting by eliminating features (either manually or via model selection)

Reduce model complexity Reduce model variance

Ridge regression

Linear regression objective function

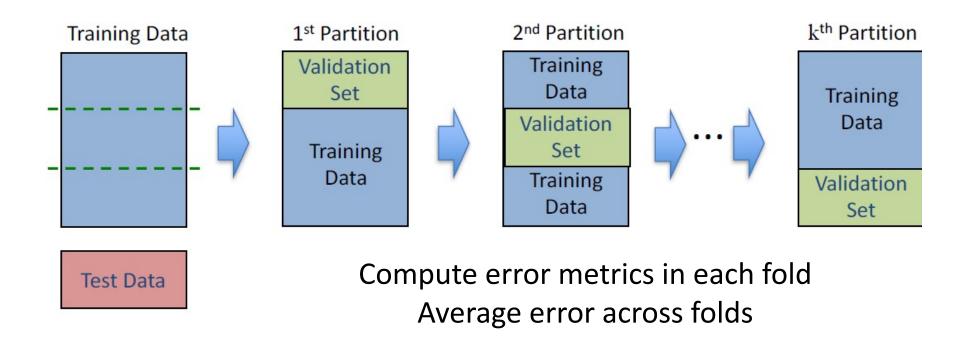


- $-\lambda$ is the regularization parameter ($\lambda > 0$)
- No regularization on θ_0 !

No regularization on
$$\theta_0!$$

 $\begin{cases} \text{PIDGE} & \text{OR L2} \\ \text{LASSO} & \text{OR U} \\ \end{pmatrix} \text{ $\lambda |\theta|_2}$ $\lambda |\theta|_1$ $\lambda |\theta|_2$ $\lambda |\theta|_1$ $\lambda |\theta|_2$ $\lambda |\theta|_2$$

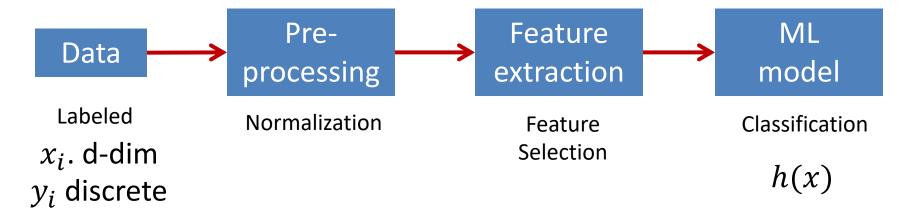
k-fold Cross Validation



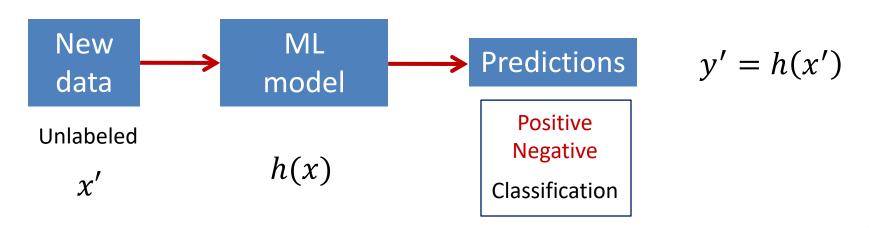
- Split training data into k partitions (folds) of equal size
- Pick the optimal value of hyper-parameter according to error metric averaged over all folds (computed on validation set)

Supervised Learning: Classification

Training



Testing



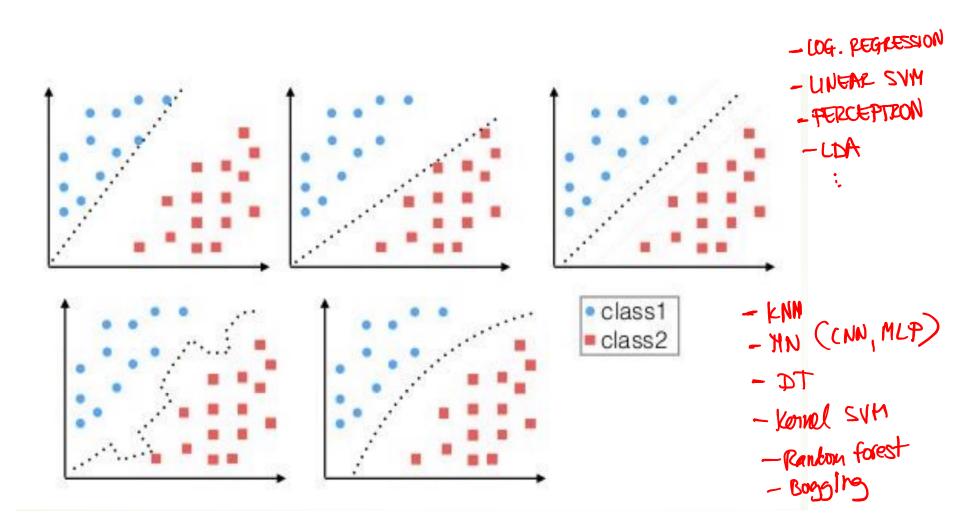
Linear Classifiers

Linear classifiers: represent decision boundary by hyperplane

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} x^\mathsf{T} = \begin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix}$$

$$h_\theta(x) = f(\theta^T x) \text{ linear function}$$
• If $\theta^T x > 0$ classify "Class 1"
• If $\theta^T x < 0$ classify "Class 0"

Linear vs Non-Linear Classifiers



Logistic Regression

Setup

- Training data: $\{x_i, y_i\}$, for i = 1, ..., N
- − Labels: $y_i \in \{0,1\}$

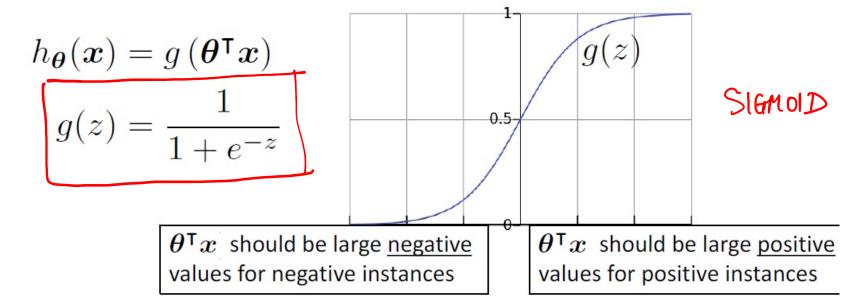
Goals

- $\operatorname{Learn} h_{\theta}(x) = P(Y = 1 | X = x)$
- -P(Y = 1|X) + P(Y = 0|X) = 1

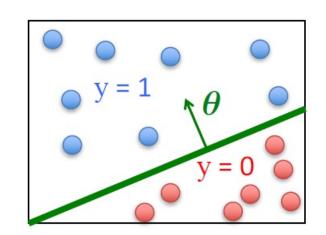
Highlights

- Probabilistic output
- At the basis of more complex models (e.g., neural networks)
- Supports regularization (Ridge, Lasso)
- Can be trained with Gradient Descent

Logistic Regression



- Assume a threshold and...
 - Predict Y = 1 if $h_{\theta}(x) \ge 0.5$
 - Predict Y = 0 if $h_{\theta}(x) < 0.5$



Logistic Regression is a linear classifier!

Cross-Entropy Loss

- Standard loss function for binary classification
- Derived from Maximum Likelihood Estimation (MLE)

$$\min_{\theta} J(\theta)$$

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

$$y_i = 0$$

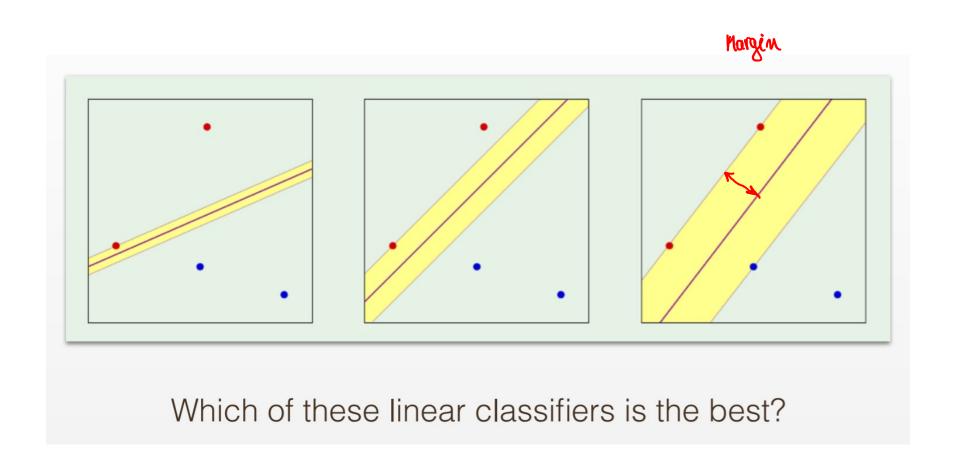
$$y_i = 0$$

$$y_i = 1$$

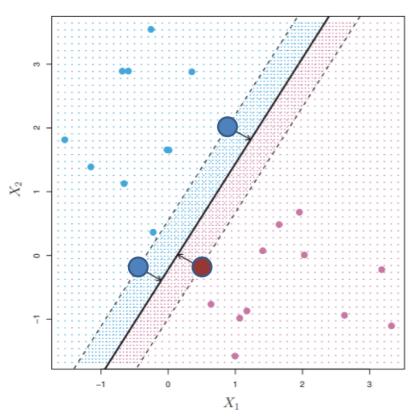
$$\log (n - \log(xi))$$

Gradient Descent for Logistic Regression

Optimal Linear Classifiers



Support Vectors Classifiers



- Support vectors = points "closest" to hyperplane
- Support vector classifier: maximize the margin
- If support vectors change, classifier changes

SVM Classifier

- Support Vector Classifier (SVC, linear SVM)
 - Train with hinge loss objective
 - Linear SVM classifier is linear combination of dot product

between testing point and support vectors
$$-h(z) = \theta_0 + \sum_{i \in S} \alpha_i < z, x_i > \text{support} \quad \text{support} \quad \text{rectors}$$

- SVM classifier
 - Select a kernel function K
 - SVM classifier is linear combination of kernel between testing point and support vectors

$$-h(z) = \theta_0 + \sum_{i \in S} \alpha_i K(z, x_i)$$

Polynomial kernel of degree(p)

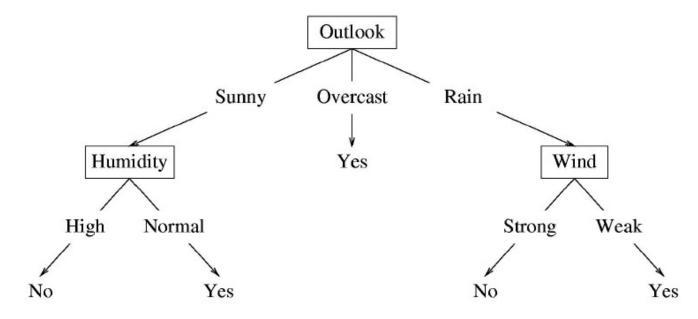
$$-K(x,y) = (1 + \sum_{i=0}^{d} x_i y_i)^p$$

Radial Basis Function (RBF) kernel (or Gaussian)

$$-K(x,y) = \exp\left(-\sum_{i=0}^{d} (x_i - y_i)^2 / 2\gamma^2\right)$$

Decision Tree

A possible decision tree for the data:



- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $p(Y \mid x \in \text{leaf})$)

Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i}IG(X_{i})=\arg\max_{i}H(Y)-H(Y\mid X_{i})$$
 urse

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

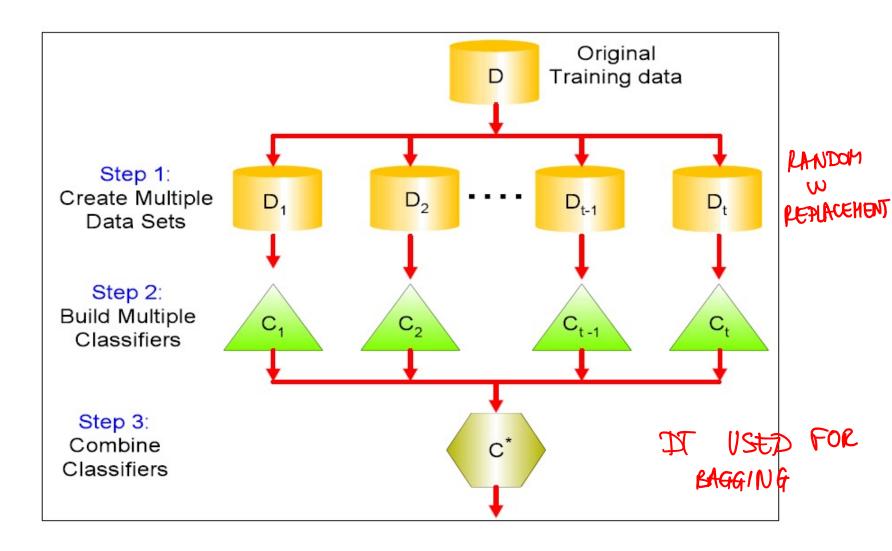
How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

Bagging



Random Forest Algorithm

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\rm rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

Summary

- Linear regression has closed form solution for MSE loss
- Gradient Descent is a general optimization technique
 - Converges for convex objectives (MSE)
 - Applied to cross-entropy loss for logistic regression
 - Can be extended for deep learning
- Non-linear classifiers are more powerful
 - Kernel SVMs (different kernels such as polynomial and Gaussian / RBF)
 - Decision trees (high interpretability, but prone to overfitting)
 - Ensembles (bagging and boosting)