DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

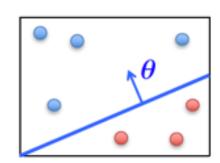
- Released solutions for Homework 1
- Homework 2 is due on Tuesday, Oct. 13 at midnight
 - University holiday on Monday, Oct. 12
- Projects
 - Start thinking about theme, dataset, and topic
 - Look at shared resources and project examples in Piazza
 - Fill in a form with area preferences on Friday
 - Participate in discussion next week

Outline

- Linear classifiers
- Perceptron wrap up
- Logistic regression
 - Classification based on probability
- Maximum Likelihood Estimation
 - Application to logistic regression
 - Cross-entropy objective
- Gradient descent for logistic regression

Linear Classifiers

Linear classifiers: represent decision boundary by hyperplane

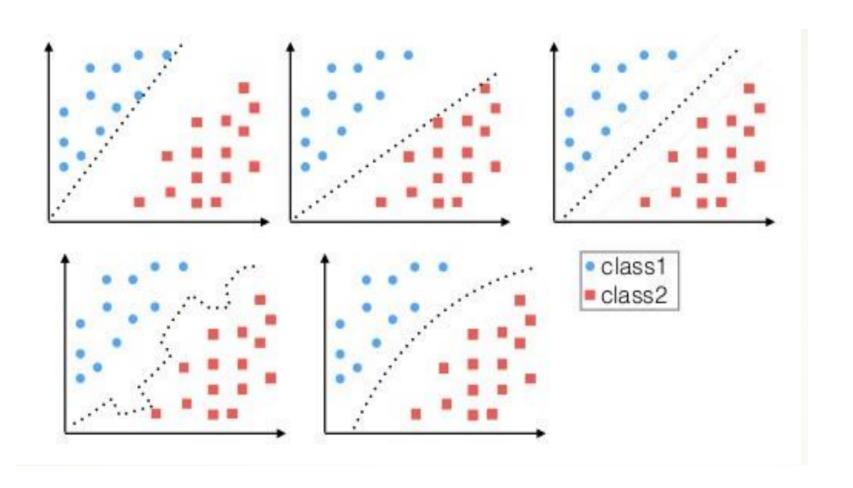


$$h_{\theta}(x) = f(\theta^T x)$$
 linear function

- If $\theta^T x > 0$ classify "Class A"
- If $\theta^T x < 0$ classify "Class B"

All the points x on the hyperplane satisfy: $\theta^T x = 0$

Linear vs Non-Linear Classifiers



Online Perceptron

```
Let \theta \leftarrow [0,0,...,0]
Repeat:
Receive training example (x_i,y_i)
If y_i\theta^Tx_i \leq 0 // prediction is incorrect \theta \leftarrow \theta + y_i x_i
```

Online learning – the learning mode where the model update is performed each time a single observation is received

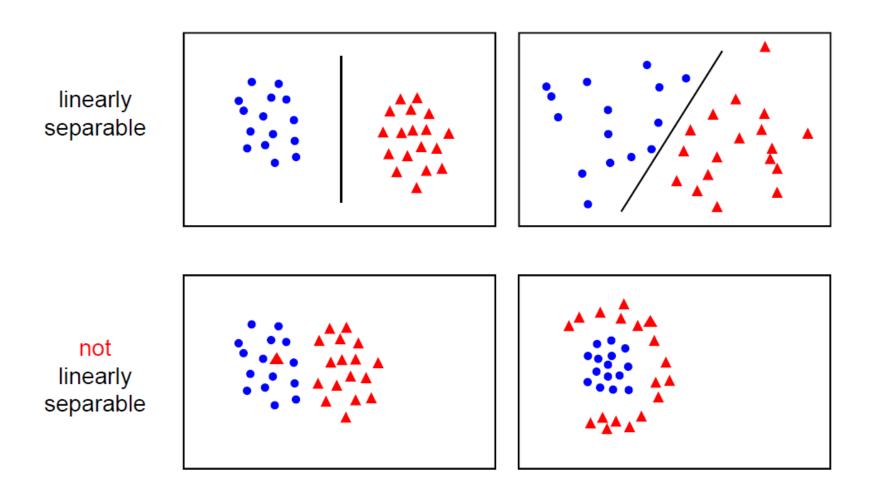
Batch learning – the learning mode where the model update is performed after observing the entire training set

Batch Perceptron

```
Given training data \{(x_i, y_i)\}_{i=1}^n
Let \boldsymbol{\theta} \leftarrow [0, 0, \dots, 0]
Repeat:
         Let \Delta \leftarrow [0, 0, \dots, 0]
         for i = 1 \dots n, do
                if y_i \theta^T x_i \leq 0 // prediction for i<sup>th</sup> instance is incorrect
                        \Delta \leftarrow \Delta + y_i x_i
         \Delta \leftarrow \Delta/n
                                                           // compute average update
         	heta \leftarrow 	heta + \Delta
Until \|\mathbf{\Delta}\|_2 < \epsilon
```

Guaranteed to find separating hyperplane if data is linearly separable

Linear separability



 For linearly separable data, can prove bounds on perceptron error (depends on how well separated the data is)

The perceptron

$$h_{\theta}(x) = f(\theta^T x)$$

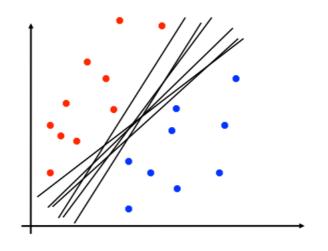
- Linear classifier
- f is the sign function for the perceptron
- Pros
 - Very compact model (size d)

- Cons of the perceptron
 - Perceptron depends on the order of training data and it could take many steps for convergence

Only classifies well data that is linearly separable

Perceptron Limitations

- Is dependent on starting point
- It could take many steps for convergence
- Perceptron can overfit
 - Move the decision boundary for every example



Which of this is optimal?

Improving the Perceptron

- The Perceptron produces many heta's during training
- The standard Perceptron simply uses the final heta at test time
 - This may sometimes not be a good idea!
 - Some other θ may be correct on 1,000 consecutive examples, but one mistake ruins it!
- Idea: Use a combination of multiple perceptrons
 - (i.e., neural networks!)
- **Idea:** Use the intermediate θ 's
 - **Voted Perceptron**: vote on predictions of the intermediate θ 's
 - Averaged Perceptron: average the intermediate θ 's

Classification Based on Probability

- Instead of just predicting the class, give the probability of the instance being in that class
 - Learn P(Y|X)
- Consider binary classifier with classes 0 and 1
 - -P(Y = 1|X) + P(Y = 0|X) = 1
 - Sufficient to learn P(Y = 1|X)
- Advantages: interpretability and confidence of output

Logistic Regression

Setup

- Training data: $\{x_i, y_i\}$, for i = 1, ..., N
- − Labels: $y_i \in \{0,1\}$

Goals

- Learn P(Y = 1 | X = x)

Highlights

- Probabilistic output
- At the basis of more complex models (e.g., neural networks)
- Supports regularization (Ridge, Lasso)
- Can be trained with Gradient Descent

Interpretation of Model Output

$$h_{\theta}(x)$$
 = estimated $P(Y = 1|X; \theta)$

Example: Cancer diagnosis from tumor size

$$\boldsymbol{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = 0.7$

→ Tell patient that 70% chance of tumor being malignant

Note that:
$$P(Y = 0|X; \theta) + P(Y = 1|X; \theta) = 1$$

Therefore,
$$P(Y = 0|X; \theta) = 1 - P(Y = 1|X; \theta)$$

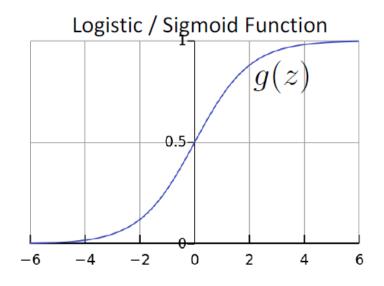
Logistic Regression

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{\theta}(x)$ should give $P(Y = 1|X; \theta)$
 - Want $0 \le h_{\boldsymbol{\theta}}(\boldsymbol{x}) \le 1$
- Logistic regression model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g\left(\boldsymbol{\theta}^{\intercal} \boldsymbol{x}\right)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$



LR is a Linear Classifier!

• Predict Y = 1 if:

$$-P[Y = 1 | X = x; \theta] > P[Y = 0 | X = x; \theta]$$

$$-P[Y = 1 | X = x; \theta] > \frac{1}{2}$$

$$\frac{1}{1 + e^{-\theta^T x}} > \frac{1}{2}$$

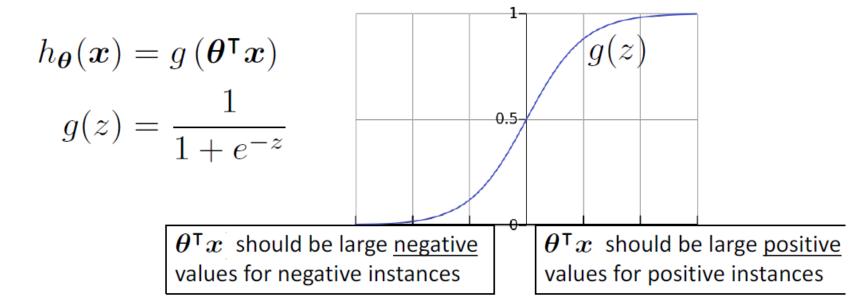
Equivalent to:

$$\bullet e^{\theta_0 + \sum_{j=1}^d \theta_j x_j} > 1$$

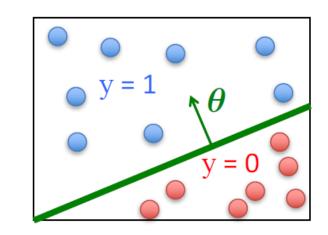
$$\bullet \ \theta_0 + \sum_{j=1}^d \theta_j x_j > 0$$

Logistic Regression is a linear classifier!

Logistic Regression



- Assume a threshold and...
 - Predict Y = 1 if $h_{\theta}(x) \ge 0.5$
 - Predict Y = 0 if $h_{\theta}(x) < 0.5$



Logistic Regression is a linear classifier!

How to Pick Loss Function?

Maximum Likelihood Estimation (MLE)

Given training data $X = \{x_1, ..., x_N\}$ with labels $Y = \{y_1, ..., y_N\}$

What is the likelihood of training data for parameter θ ?

Define likelihood function

$$Max_{\theta} L(\theta) = P[Y|X;\theta]$$

Assumption: training points are independent

$$L(\theta) = \prod_{i=1}^{N} P[Y = y_i | X = x_i; \theta]$$

General probabilistic method for classifier training

Log Likelihood

 Max likelihood is equivalent to maximizing log of likelihood

$$L(\theta) = \prod_{i=1}^{N} P[Y = y_i | X = x_i; \theta]$$

$$\log L(\theta) = \sum_{i=1}^{N} \log P[Y = y_i | X = x_i; \theta]$$

• They both have the same maximum θ_{MLE}

MLE for Logistic Regression

$$P(Y = y_i | X = x_i; \theta) = h_{\theta}(x_i)^{y_i} (1 - h_{\theta}(x_i))^{1 - y_i}$$

$$\theta_{MLE} = \operatorname{argmax}_{\theta} \sum_{i=1}^{N} \log P[Y = y_i | X = x_i; \theta]$$

$$= \operatorname{argmax}_{\theta} \sum_{i=1}^{N} y_i \log h_{\theta}(x_i) + (1 - y_i) \log \left(1 - h_{\theta}(x_i)\right)$$

Logistic regression objective

$$\min_{\theta} J(\theta)$$

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Cross-Entropy Objective

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Cost of a single instance:

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

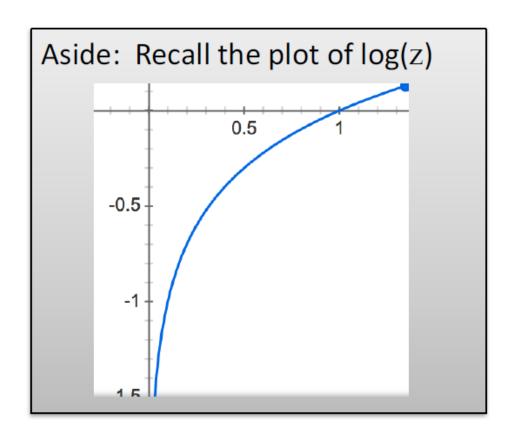
Can re-write objective function as

$$J(oldsymbol{ heta}) = \sum_{i=1}^n \operatorname{cost} \left(h_{oldsymbol{ heta}}(x_i), y_i
ight)$$

Cross-entropy loss

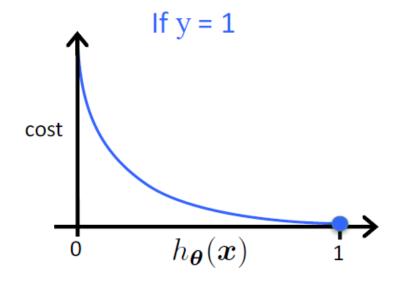
Intuition

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$



Intuition

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

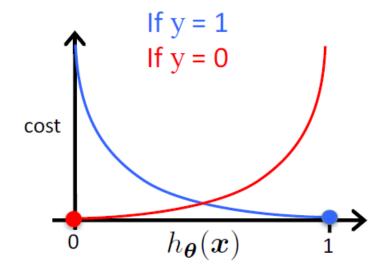


If
$$y = 1$$

- Cost = 0 if prediction is correct
- As $h_{\theta}(x) \to 0$, $\cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $h_{m{ heta}}(m{x})=0$, but y = 1

Intuition

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$



If y = 0

- Cost = 0 if prediction is correct
- As $(1 h_{\theta}(x)) \to 0$, $\cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties

Cross-Entropy Objective

$$P(Y = y_i | X = x_i; \theta) = h_{\theta}(x_i)^{y_i} (1 - h_{\theta}(x_i))^{1 - y_i}$$

$$\theta_{MLE} = \operatorname{argmax}_{\theta} \sum_{i=1}^{N} \log P[Y = y_i | X = x_i; \theta]$$

$$= \operatorname{argmax}_{\theta} \sum_{i=1}^{N} y_i \log h_{\theta}(x_i) + (1 - y_i) \log \left(1 - h_{\theta}(x_i)\right)$$

Logistic regression objective

$$\min_{\theta} J(\theta)$$

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Logistic Regression Lab Example

Review

- Perceptron is the first example of linear classifier
 - Online and batch learning
 - Has several limitations
- Logistic regression is a linear classifier that predicts class probability
- Maximum Likelihood Estimation is a method to estimate model parameters
 - Derive cross-entropy loss function
- Logistic regression can be trained with GD

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!