Recording

The class will be recorded and the recordings made available via Canvas

To opt out: send a message in the Chat

DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

- HW 1
 - Will be out today
 - Will be due on Monday, Sept. 28
- Python tutorials
 - Numpy tutorial by Matthew Jagielski
 - Friday, Sept. 18, 1-2pm
 - Panda data frames tutorial by Alex Wang
 - Wed, Sept. 23, 5-6pm
 - Same Zoom links as office hours

Recap

- ML is a subset of AI designing learning algorithms
- Learning tasks are supervised (e.g., classification and regression) or unsupervised (e.g., clustering)
 - Supervised learning uses labeled training data
- Learning the "best" model is challenging
 - Design algorithm to minimize the error
 - Bias-Variance tradeoff
 - Need to generalize on new, unseen test data
 - Occam's razor (prefer simplest model with good performance)

Outline

- Probability review
 - Conditional probabilities
 - Bayes Theorem
- Linear algebra review
 - Matrix and vector operations
 - Transpose, inverse
 - Rank of a matrix
- Covariance and correlation coefficient

Probability review

Probability Resources

- <u>Review notes</u> from Stanford's machine learning class
- Sam Roweis's <u>probability review</u>
- David Blei's probability review
- Books:
 - Sheldon Ross, A First course in probability

Discrete Random Variables

- Let A denote a random variable
 - A represents an event that can take on certain values
 - Each value has an associated probability
- Examples of binary random variables:
 - -A = I have a headache
 - -A = Sally will be the US president in 2020
- P(A) is "the fraction of possible worlds in which A is true"

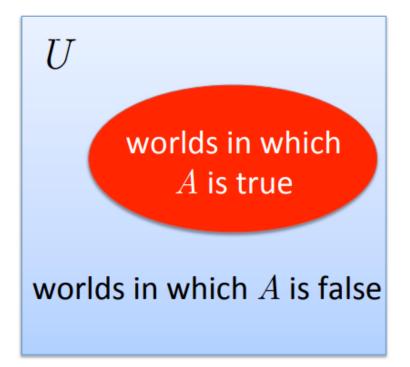
Visualizing A

- Universe U is the event space of all possible worlds
 - Its area is 1

$$-P(U)=1$$

- P(A) = area of red oval
- Therefore:

$$P(A) + P(\neg A) = 1$$
$$P(\neg A) = 1 - P(A)$$

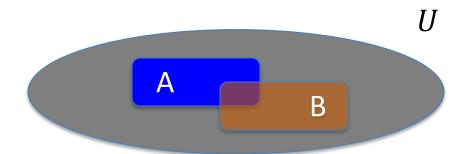


Working with Probabilities

- $0 \le P(A) \le 1$
- $P(U) = 1; P(\Phi) = 0$
- $P(\neg A) = 1 P(A)$

Working with Probabilities

- $0 \le P(A) \le 1$
- $P(U) = 1; P(\Phi) = 0$
- $P(\neg A) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$



Union bound $P(A \cup B) \leq P(A) + P(B)$

Examples discrete RV

- Bernoulli RV
 - X is modelling a coin toss
 - Output: 1 (head) or 0 (tail)
 - -P[X=1] = p; P[X=0] = 1-p
- Y is the number of points in a fair dice
 - $P[Y = k] = ? \text{ for } k \in \{1, ..., 6\}?$
 - P[Y = even] = ?

Example discrete RV

- Z is the sum of two fair dice
 - What is P[Z = k] for $k \in \{2, ..., 12\}$?
 - What is k for which this probability is maximum?

Expectation and variance

Expectation for discrete random variable X

$$E[X] = \sum_{v} vPr[X = v]$$

Properties

- E[aX] = a E[X]
- E[X + Y] = E[X] + E[Y]
- $E[f(X)] = \sum_{v} f(v) Pr[X = v]$

Variance
$$V_{\alpha}$$

$$Var[X] \triangleq E[(X - E(X))^2]$$

Expectation and variance

Expectation for discrete random variable X

$$E[X] = \sum_{v} vPr[X = v]$$

Properties

- E[aX] = a E[X]
- E[X + Y] = E[X] + E[Y]
- $E[f(X)] = \sum_{v} f(v) Pr[X = v]$

$$Var[X] \triangleq E[(X - E(X))^2]$$

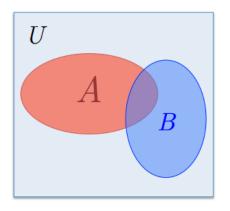
$$E[(X - E[X])^{2}] = E[X^{2} - 2E[X]X + E[X]^{2}]$$

$$= E[X^{2}] - 2E[X]E[X] + E[X]^{2}$$

$$= E[X^{2}] - E[X]^{2},$$

Conditional Probability

• $P(A \mid B)$ = Fraction of worlds in which B is true that also have A true



What if we already know that *B* is true?

That knowledge changes the probability of A

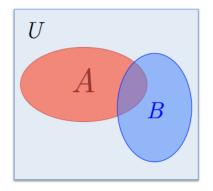
 Because we know we're in a world where B is true

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

Events A and B are **independent** if $Pr[A \cap B] = Pr[A] \cdot Pr[B]$

Conditional Probability

• $P(A \mid B)$ = Fraction of worlds in which B is true that also have A true



What if we already know that *B* is true?

That knowledge changes the probability of A

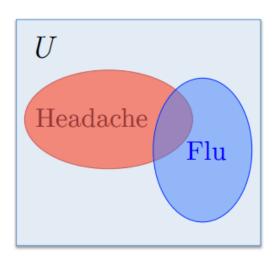
 Because we know we're in a world where B is true

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

Events A and B are **independent** if $Pr[A \cap B] = Pr[A] \cdot Pr[B]$ If A and B are independent

$$\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{\Pr[A]\Pr[B]}{\Pr[B]} = \Pr[A]$$

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

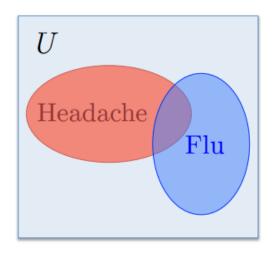


P(headache) = 1/10 P(flu) = 1/40 P(headache | flu) = 1/2

"Headaches are rare and flu is rarer, but if you're coming down with the flu there's a 50-50 chance you'll have a headache."

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

$$P(A \land B) = P(A \mid B) \times P(B)$$



One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu."

Is this reasoning good?

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

```
P(headache) = 1/10
P(flu) = 1/40
P(headache | flu) = 1/2
```

Want to solve for: $P(\text{headache } \land \text{flu}) = ?$ $P(\text{flu} \mid \text{headache}) = ?$

Exercises

 Compute Expectation and Variance for a Bernoulli RV

$$-P[X=1]=p; P[X=0]=1-p$$

2. Conditional probabilities

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

$$P(A \land B) = P(A \mid B) \times P(B)$$

Want to solve for:

$$P(\text{headache } \land \text{flu}) = ?$$

 $P(\text{flu } | \text{headache}) = ?$

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

$$P(A \land B) = P(A \mid B) \times P(B)$$

```
P(headache) = 1/10 Want to solve for:

P(flu) = 1/40 P(headache \wedge flu) = ?

P(headache | flu) = 1/2 P(flu | headache) = ?

P(headache \wedge flu) = P(headache | flu) x P(flu)

= 1/2 x 1/40 = 0.0125

P(flu | headache) = P(headache \wedge flu) / P(headache)

= 0.0125 / 0.1 = 0.125
```

Bayes Theorem

Bayes' Rule

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

- Exactly the process we just used
- The most important formula in probabilistic machine learning

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

Bayes' Rule

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

- Exactly the process we just used
- The most important formula in probabilistic machine learning

(Super Easy) Derivation:

$$P(A \land B) = P(A \mid B) \times P(B)$$

$$P(B \land A) = P(B \mid A) \times P(A)$$

these are the same

Just set equal...

$$P(A \mid B) \times P(B) = P(B \mid A) \times P(A)$$
 and solve...

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

Multi-Value Random Variable

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\{v_1, v_2, ..., v_k\}$
- Thus...

$$P(A = v_i \land A = v_j) = 0 \quad \text{if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor \dots \lor A = v_k) = 1$$

$$1 = \sum_{i=1}^{k} P(A = v_i)$$

EXAMPLE

Multi-Value Random Variable

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\{v_1, v_2, ..., v_k\}$
- Thus...

$$P(A = v_i \land A = v_j) = 0 \quad \text{if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor \dots \lor A = v_k) = 1$$

$$1 = \sum_{i=1}^{k} P(A = v_i)$$

A: Month of the Year

EXAMPLE

$$P(A = Jan) = \frac{31}{365}$$
 $P(A = Feb) = \frac{28}{365}$

Marginalization

We can also show that:

$$P(B) = P(B \land [A = v_1 \lor A = v_2 \lor \dots \lor A = v_k])$$

$$P(B) = \sum_{i=1}^k P(B \land A = v_i)$$

$$= \sum_{i=1}^k P(B \mid A = v_i) P(A = v_i)$$

This is called marginalization over A

EXAMPLE

Marginalization

We can also show that:

$$P(B) = P(B \land [A = v_1 \lor A = v_2 \lor \dots \lor A = v_k])$$

$$P(B) = \sum_{i=1}^k P(B \land A = v_i)$$

$$= \sum_{i=1}^k P(B \mid A = v_i) P(A = v_i)$$

• This is called marginalization over A

EXAMPLE A: Month of the Year; B: Tomorrow is sunny

$$P(Sunny) = \sum_{i=1}^{12} P(Sunny | A = Month i)P(A = Month i)$$

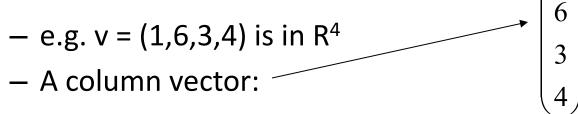
Linear algebra review

Resources

- Zico Kolter, <u>Linear algebra review</u>
- Sam Roweis's <u>linear algebra review</u>
- Books:
 - O. Bretscher, Linear Algebra with Applications

Vectors and matrices

 Vector in Rⁿ is an ordered set of n real numbers.



 m-by-n matrix is an object in R^{mxn} with m rows and n columns, each entry filled with a (typically) real number:

$$\begin{pmatrix}
1 & 2 & 8 \\
4 & 78 & 6 \\
9 & 3 & 2
\end{pmatrix}$$

Vector operations

Addition component by component

$$[a_1, a_2, ..., a_n] + [b_1, b_2, ..., b_n] = [a_1 + b_1, ..., a_n + b_n]$$

 $[1, -2,5] + [0,3,7] =$

Subtraction is also done component by component

$$[a_1, a_2, ..., a_n] - [b_1, b_2, ..., b_n] = [a_1 - b_1, ..., a_n - b_n]$$

- Can add and subtract row or column vectors of same dimension
- Dot product
 - Only works for row and column vector of same size

$$[a_1, a_2, ..., a_n] \cdot \begin{bmatrix} b_1 \\ ... \\ b_n \end{bmatrix} = [a_1 b_1, ..., a_n b_n]$$

 $[1, -2,5] \cdot \begin{bmatrix} 0 \\ 3 \\ 7 \end{bmatrix} =$

Matrix multiplication

We will use upper case letters for matrices. The elements are referred by A_{i,j}.

Matrix product:

$$A \in \mathbb{R}^{m \times n}$$
 $B \in \mathbb{R}^{n \times p}$ $C = AB \in \mathbb{R}^{m \times p}$ $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$

e.g.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

Matrix transpose

Transpose: You can think of it as

- "flipping" the rows and columns
- OR
- "reflecting" vector/matrix on line

e.g.
$$\begin{pmatrix} a \\ b \end{pmatrix}^T = \begin{pmatrix} a & b \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$\bullet \ (A^T)^T = A$$

$$\bullet \ (AB)^T = B^T A^T$$

•
$$(AB)^T = B^T A^T$$

• $(A+B)^T = A^T + B^T$

A is a symmetric matrix if $A = A^T$

Linear independence

- A set of vectors is linearly independent if none of them can be written as a linear combination of the others.
- Vectors $x_1,...,x_k$ are linearly independent if $c_1x_1+...+c_kx_k=0$ implies $c_1=...=c_k=0$
- Otherwise they are linearly

$$x_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \qquad x_2 = \begin{pmatrix} 0 \\ 3 \\ 3 \end{pmatrix}$$

Linear independence

- A set of vectors is linearly independent if none of them can be written as a linear combination of the others.
- Vectors $x_1,...,x_k$ are linearly independent if $c_1x_1+...+c_kx_k=0$ implies $c_1=...=c_k=0$
- Otherwise they are linearly

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix} \quad x_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$

Linear independence

- A set of vectors is linearly independent if none of them can be written as a linear combination of the others.
- Vectors v₁,...,v_k are linearly independent if c₁v₁+...+c_kv_k = 0 implies c₁=...=c_k=0
- Otherwise they are linearly dependent

$$x_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
 $x_2 = \begin{pmatrix} 0 \\ 3 \\ 3 \end{pmatrix}$ $(c_1, c_2) = (0,0)$, i.e. the columns are linearly independent.

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ $x_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$ Linearly dependent $x_3 = -2x_1 + x_2$

Rank of a Matrix

- rank(A) (the rank of a m-by-n matrix A) is The maximal number of linearly independent columns The maximal number of linearly independent rows
- If A is n by m, then
 - $\operatorname{rank}(A) \le \min(m,n)$

• Examples
$$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 3 \\ 0 & 5 & 2 \end{pmatrix}$$

Inverse of a matrix

- Inverse of a square matrix A, denoted by A⁻¹ is the *unique* matrix s.t.
 - $-AA^{-1}=A^{-1}A=I$ (identity matrix)
- Inverse of a square matrix exists only if the matrix is full rank
- If A⁻¹ and B⁻¹ exist, then

$$-(AB)^{-1} = B^{-1}A^{-1}$$

$$-(A^{T})^{-1}=(A^{-1})^{T}$$

Diagonal matrices

System of linear equations

$$4x_1 - 5x_2 = -13 \\
-2x_1 + 3x_2 = 9.$$

Matrix formulation

$$Ax = b$$

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}.$$

If A has an inverse, solution is $x = A^{-1}b$