DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Class Outline

- Introduction 1 week
 - Probability and linear algebra review
- Linear regression 2 weeks
- Classification 5 weeks
 - Linear classifiers: logistic regression, LDA,
 - Non-linear: kNN, decision trees, SVM, Naïve Bayes
 - Ensembles: random forest, boosting
 - Model selection, regularization, cross validation
- Neural networks and deep learning 2 weeks
 - Back-propagation, gradient descent
 - NN architectures (feed-forward, convolutional, recurrent)
- Ethics of AI 1 week
- Adversarial ML 1 lecture
 - Security of ML at testing and training time

Schedule and Resources

Instructors

- Alina Oprea
- TAs: Alex Wang, Matthew Jagielski

Schedule

- Tue 11:45am 1:25pm, Thu 2:50-4:30pm EST
- Zoom
- Office hours:

 - Alina: Tue 4:00-5:30pm; Thu 4:30 5:30 pm (Zoom)
 Matthew: Monday 3:00-4:00pm; Friday 9:00-10:00am (Zoom)
 Alex: Wednesday: 5:00-7:00pm

 - Links on Canvas under "Syllabus"

Online resources

- Slides / recordings will be posted after each lecture
- Use Piazza for questions
- Canvas as course management system

Grading

- Assignments 25%
 - 4-5 assignments and programming exercises based on studied material in class
- Final project 35%
 - Select your own project based on public dataset
 - Submit short project proposal and milestone
 - Presentation at end of class (10 min) and written report
 - Team of 2 students
- Exam 35%
 - One exam second half of November
 - Tentative date: November 19
- Class participation 5%
 - Participate in class discussion/Zoom and on Piazza

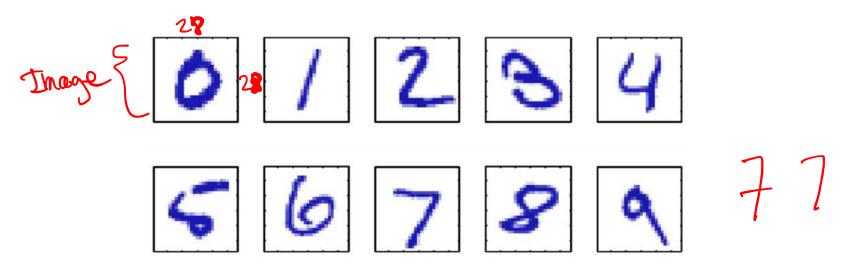
Announcements

- HW 1
 - Will be out this Thursday, Sept. 17
 - Will be due on Monday, Sept. 28
- Python tutorials
 - Numpy tutorial by Matthew Jagielski
 - Friday, Sept. 18, 1-2pm
 - Panda data frames tutorial by Alex Wang
 - Wed, Sept. 23, 5-6pm
 - Same Zoom links as office hours

Outline

- Supervised learning
 - Classification
 - Regression
- Unsupervised learning
 - Clustering
- Bias-Variance Tradeoff
- Occam's Razor
- Probability review

Example 1 Handwritten digit recognition

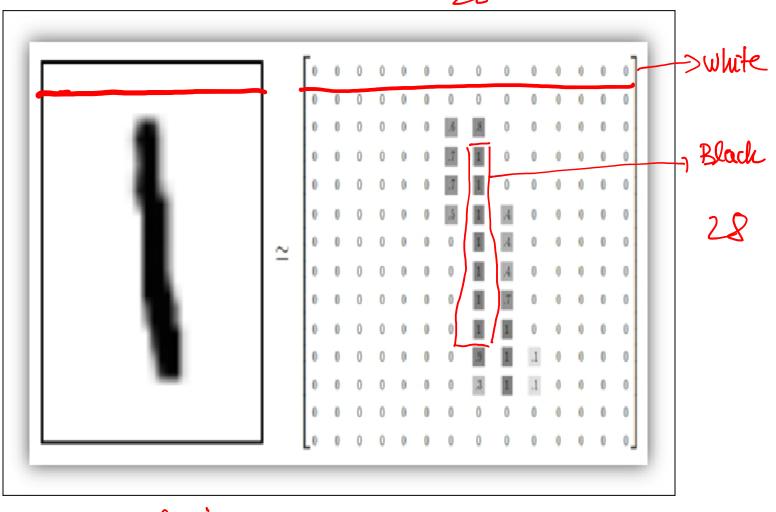


Images are 28 x 28 pixels

Represent input image as a vector $\mathbf{x} \in \mathbb{R}^{784}$ Learn a classifier $f(\mathbf{x})$ such that, $f: \mathbf{x} \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Thage Label Class MNIST dataset: Predict the digit Multi-class classifier

Data Representation

28



Original image

MATRIX

Model the problem

As a supervised classification problem Start with training data, e.g. 6000 examples of each digit 00011(1112 aマママる2ス3(み 344445555 447777388 888194999 -) New Digit Can achieve testing error of 0.4%

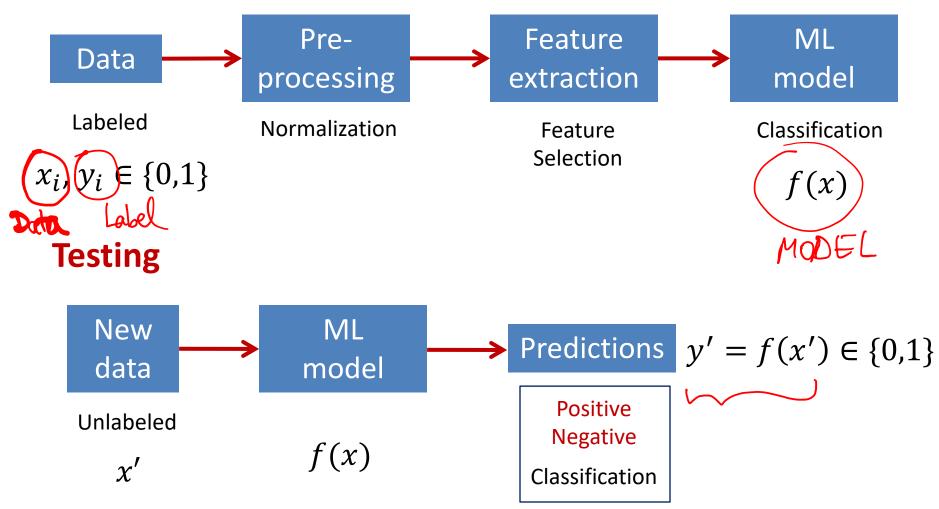
One of first commercial and widely used ML systems (for zip codes & checks)

Other examples

- Spam classification
 - Is my email spam or not?
 - Binary classification
- Weather prediction
 - Will it rain tomorrow or not?
- Healthcare classification
 - Is the patient sick or not?
- Image classification
 - What object does the image depict?

Supervised Learning: Classification

Training



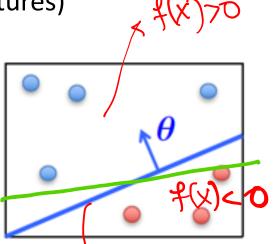
Classification

Training data

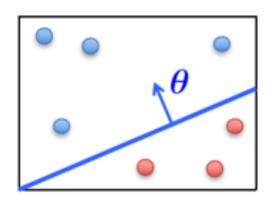
- $-x_i = [x_{i,1}, ... x_{i,d}]$: vector of image pixels (features)
- Size d = 28x28 = 784
- $-y_i$: image label
- Models (hypothesis)
 - Example: Linear model (parametric model)

$$\bullet f(x) = wx + b$$

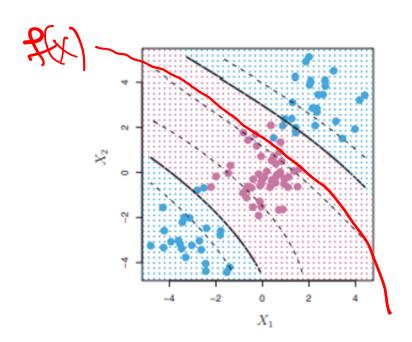
- Classify 1 if f(x) > T; 0 otherwise
- Classification algorithm
 - Training: Learn model parameters w, b to minimize error (number of training examples for which model gives wrong label)
 - Output: "optimal" model
- Testing
 - Apply learned model to new data and generate prediction f(x)

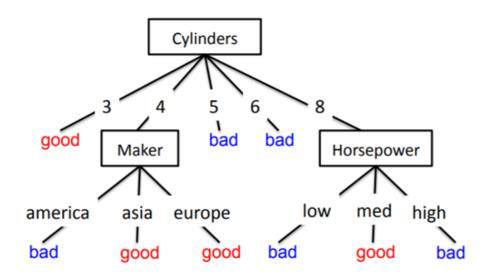


Example Classifiers



Linear classifiers: logistic regression, SVM, LDA





Decision trees

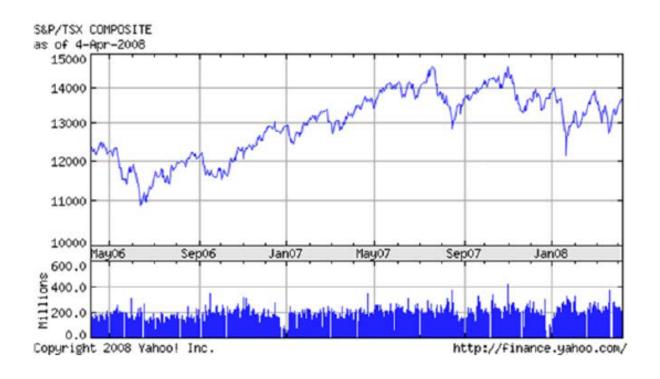
SVM polynomial kernel

Why Multiple Models?

There is no free lunch in statistics / ML!

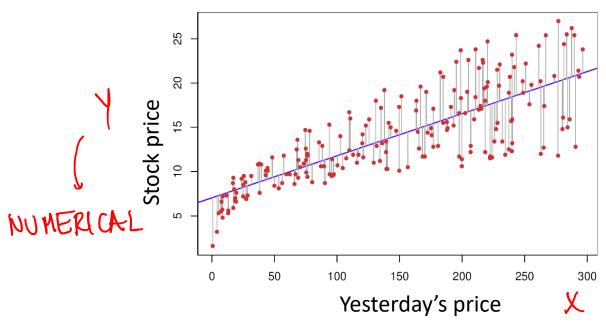
- There is no single model that dominates all
- Performance depends on many things, such as:
 - Data distribution
 - Data dimensionality
 - Quality of data and labeling

Example 2 Stock market prediction



- Task is to predict stock price at future date
- This is a regression task, as the output is continuous

Regression



Linear regression

1 dimension

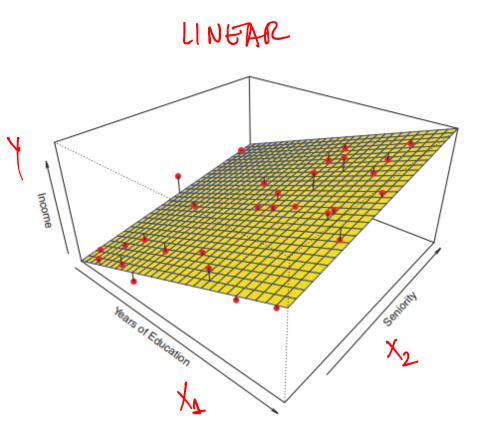
Suppose we are given a training set of N observations

$$(x_1,\ldots,x_N)$$
 and (y_1,\ldots,y_N)
 2 ATA (FEATURES) RESPONSE VAR.

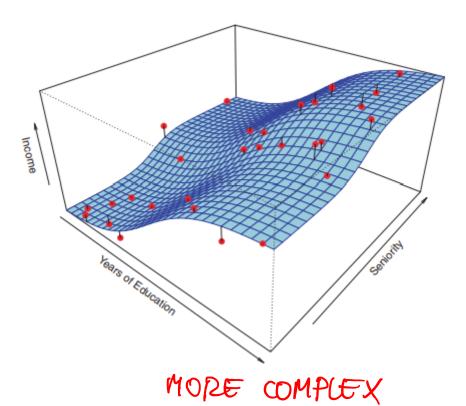
Regression problem is to estimate y(x) from this data

$$x_i = (x_{i1}, ..., x_{id})$$
 - d predictors (features) y_i - response variable, numerical

Income Prediction

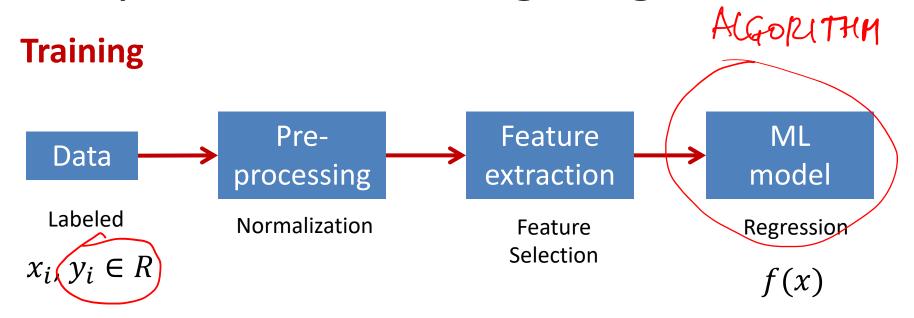


Linear Regression

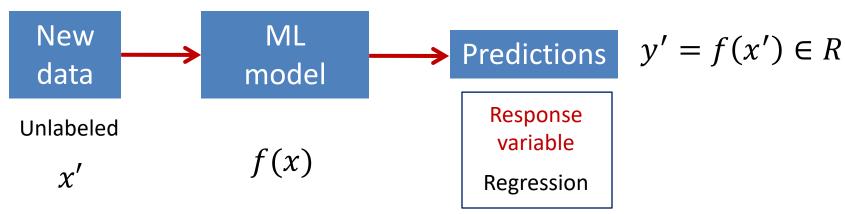


Non-Linear Regression Polynomial/Spline Regression

Supervised Learning: Regression



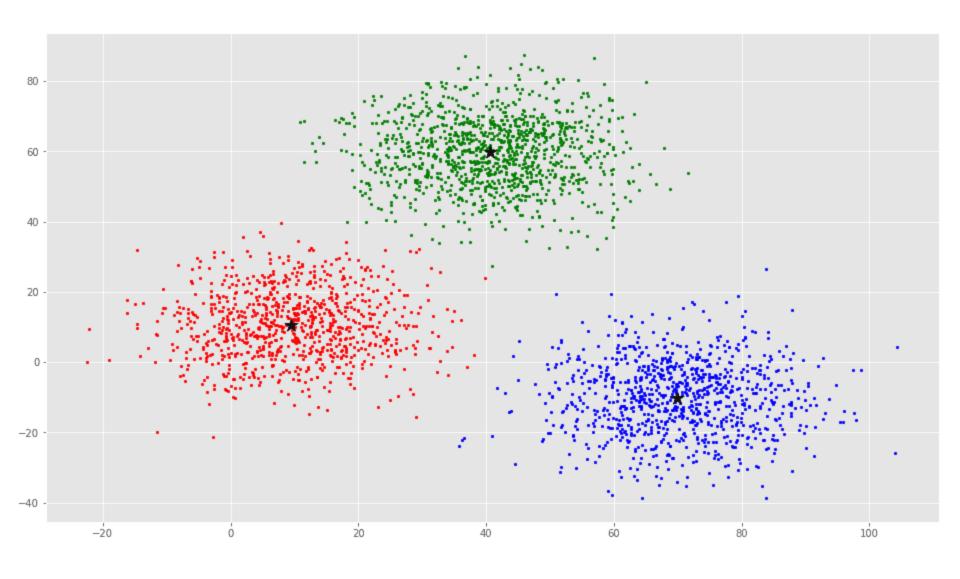
Testing



Example 3: image search

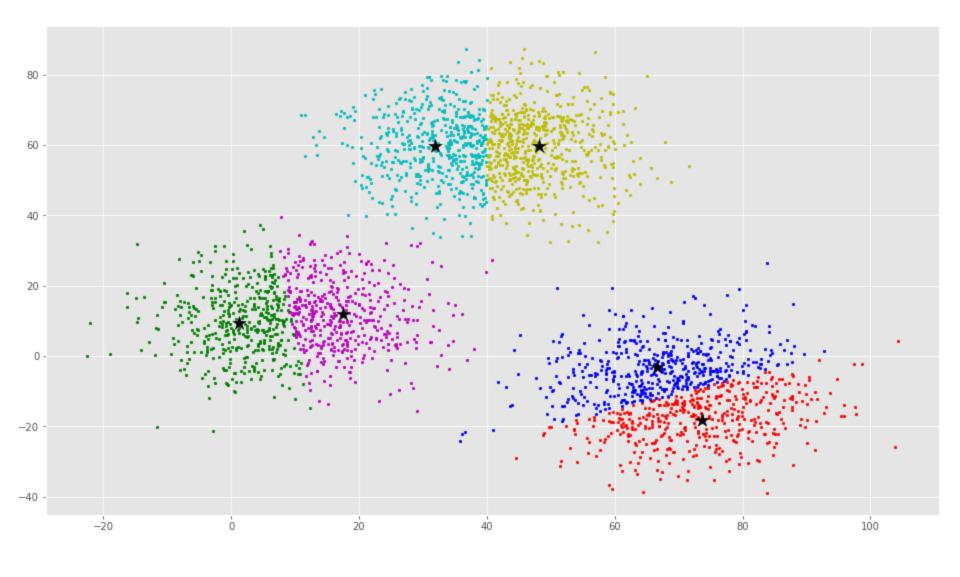
Clustering images

K-means Clustering



K=3

K-means Clustering



K=6

Unsupervised Learning

Clustering

- Group similar data points into clusters
- Example: k-means, hierarchical clustering, densitybased clustering

Dimensionality reduction

- Project the data to lower dimensional space
- Example: PCA (Principal Component Analysis)

Feature learning

- Find feature representations
- Example: Autoencoders

Supervised Learning Tasks

- Classification
 - Learn to predict class (discrete)
 - Minimize classification error $1/N \sum_{i=1}^{N} [y_i \neq f(x_i)]$
- Regression
 - Learn to predict response variable (numerical)
 - Minimize MSE (Mean Square Error)
 - $-1/N\sum_{i=1}^{N}[y_i-f(x_i)]^2$
- Both classification and regression
 - Training and testing phase
 - "Optimal" model is learned in training and applied in testing

Learning Challenges

Goal

- Classify well new testing data
- Model generalizes well to new testing data
- Minimize error (MSE or classification error) in testing

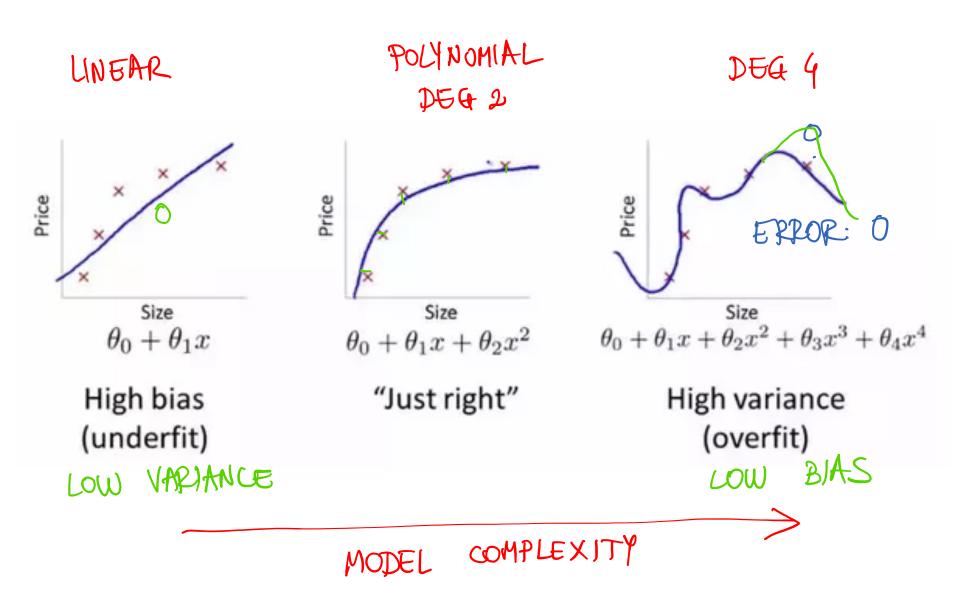
Variance

- Amount by which model would change if we estimated it using a different training data set
- More complex models result in higher variance

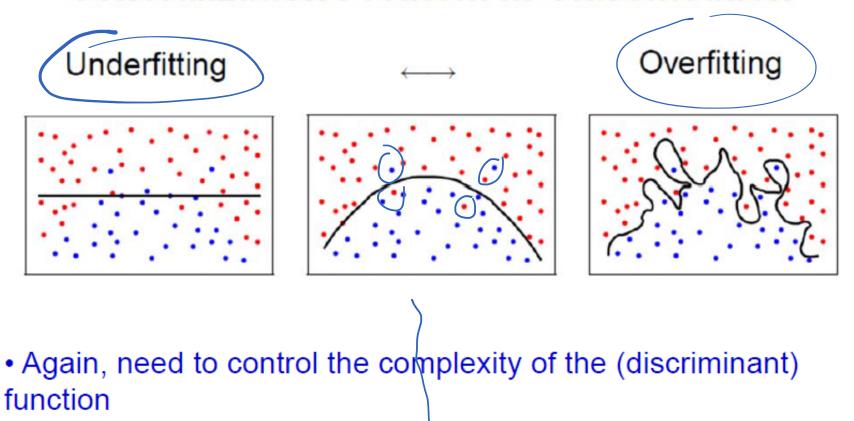
Bias

- Error introduced by approximating a real-life problem by a much simpler model
- E.g., assume linear model (linear regression), then error is high
- More complex models result in lower bias

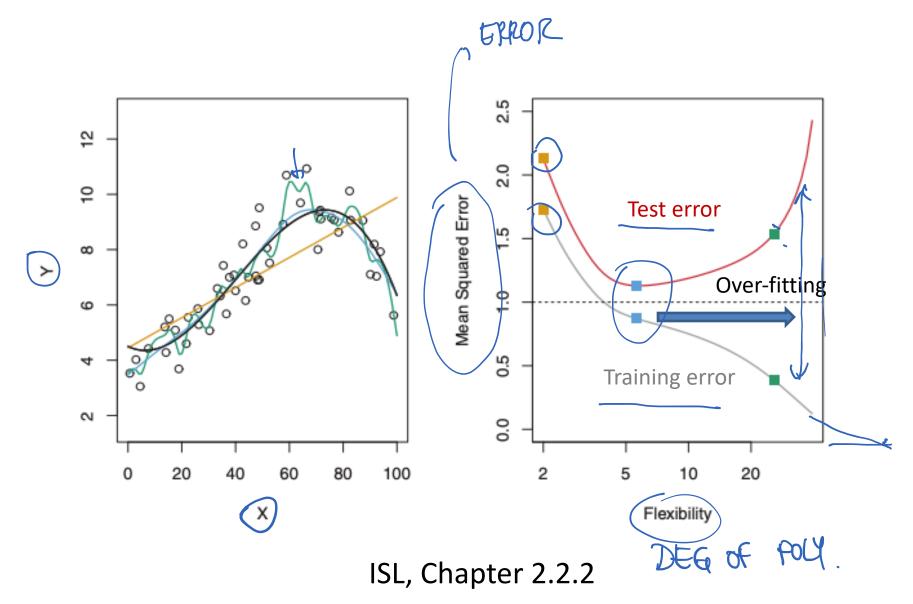
Example: Regression



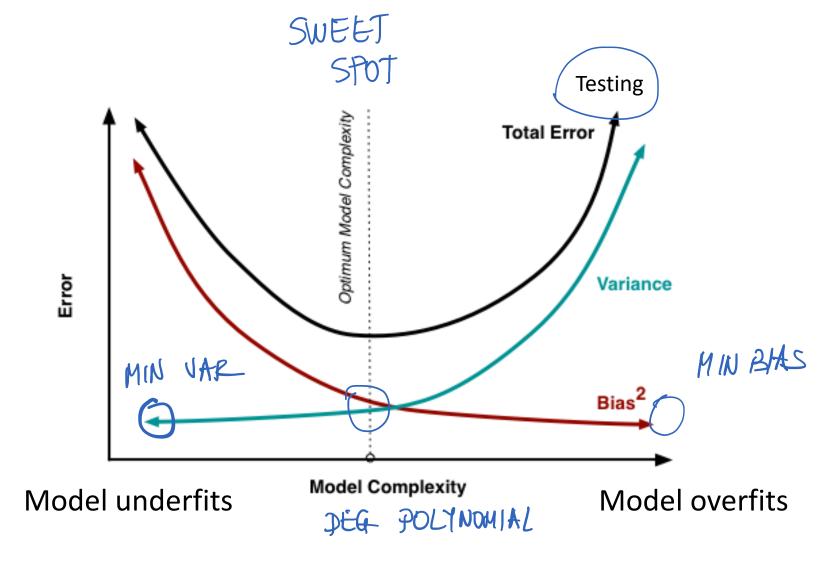
Generalization Problem in Classification



Training and testing error



Bias-Variance Tradeoff



Test error is sum of bias, variance and noise

Occam's Razor

- William of Occam: Monk living in the 14th century
- Principle of parsimony:

"One should not increase, beyond what is necessary, the number of entities required to explain anything"

 When many solutions are available for a given problem, we should select the simplest one

Select the simplest machine learning model that gets reasonable accuracy for the task at hand

Recap

- ML is a subset of AI designing learning algorithms
- Learning tasks are supervised (e.g., classification and regression) or unsupervised (e.g., clustering)
 - Supervised learning uses labeled training data
- Learning the "best" model is challenging
 - Design algorithm to minimize the error
 - Bias-Variance tradeoff
 - Need to generalize on new, unseen test data
 - Occam's razor (prefer simplest model with good performance)

Probability review

Probability Resources

- <u>Review notes</u> from Stanford's machine learning class
- Sam Roweis's <u>probability review</u>
- David Blei's <u>probability review</u>
- Books:
 - Sheldon Ross, A First course in probability

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!