DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor, CCIS
Northeastern University

November 24 2020

Announcements

- Project milestone: Nov 25
- Ethics of AI: Tue, Dec 1, by Kevin Mills
 - Please complete survey before class
 - Email from Matthew Kopec
- Project presentations
 - Tue, Dec 8, 11:45am-1:25pm
 - Wed, Dec 9, 12:00-2:00pm
- Project report
 - Tue, Dec 15

Outline

- Backpropagation algorithm
 - Example for 2-layer neural network
- Lab on Convolutional Neural Networks
- Regularization
 - Weight decay (aka ridge regularization)
 - Dropout
- Transfer Learning

How to train Neural Networks?

- Backpropagation algorithm
- David Rumelhart, Geoffrey Hinton, Ronald Williams. "Learning representations by backpropagating errors". Nature. 323 (6088): 533– 536. 1986
- Applicable to both FFNN and CNN
- Extension of Gradient Descent to multi-layer neural networks

Training Neural Networks

- Training data $x_1, y_1, ... x_N, y_N$
- One training example $x_i = (x_{i1}, ... x_{id})$, label y_i
- One forward pass through the network
 - Compute prediction $\hat{y}_i = h(x_i)$
- Loss function for one example

$$L(\hat{y}, y) = -[(1 - y) \log(1 - \hat{y}) + y \log \hat{y}]$$

Cross-entropy loss

Loss function for training data

$$-J(W,b) = \frac{1}{N} \sum_{i} L(\widehat{y}_{i}, y_{i}) + \lambda R(W,b)$$

$$2EGULAR(2ATION)$$

GD for Neural Networks

Initialization

- For all layers ℓ
 - Initialize $W^{[\ell]}$, $b^{[\ell]}$

Backpropagation

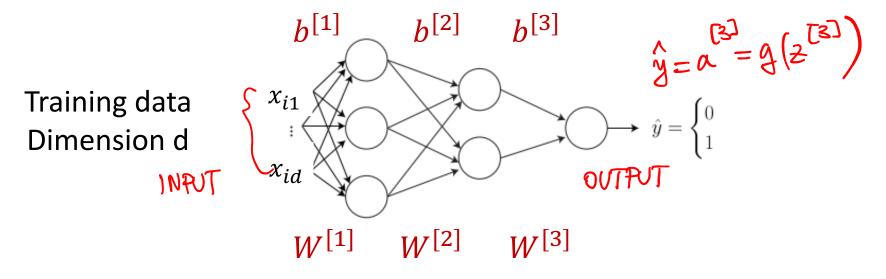
- Fix learning rate α
- For all layers ℓ (starting backwards)

$$\bullet \ W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial W^{[\ell]}}$$

$$\bullet \ b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$
LANCE $\stackrel{?}{\sim} \stackrel{?}{\sim} \stackrel{1}{\sim} \stackrel{1}{\sim} \stackrel{1}{\sim} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$

•
$$b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

Example 2 Hidden Layers



$$\begin{array}{l} z^{[1]} = W^{[1]} \ x_i + b^{[1]} \ \ \text{Linfar} \ \ g = \text{SIGMOLD} \\ a^{[1]} = g(z^{[1]}) & \text{Act} \\ z^{[2]} = W^{[2]} a^{[1]} + b^{[2]} \ \ \ \text{Linfar} \\ a^{[2]} = g(z^{[2]}) & \text{Act} \\ z^{[3]} = W^{[3]} a^{[2]} + b^{[3]} \ \ \ \text{Linfar} \\ \hat{y}^{(i)} = a^{[3]} = g(z^{[3]}) & \text{Act} \end{array}$$

Backpropagation

 $\delta^{[1]}$

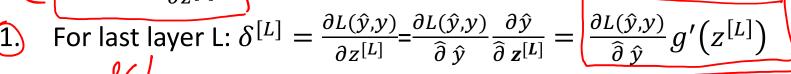
Let $\delta_{j}^{\;(l)}=$ "error" of node j in layer l

$$L(y, \hat{y}) = -[(1-y)\log(1-\hat{y}) + y\log\hat{y}]$$

Definitions

$$-z^{[\ell]} = W^{[\ell]} a^{[\ell-1]} + b^{[\ell]}, a^{[\ell]} = g(z^{[\ell]})$$

$$-\delta^{[\ell]} = \frac{\partial L(\hat{y}, y)}{\partial z^{[\ell]}}; \text{Output } \hat{y} = a^{[L]} = g(z^{[L]})$$



- 3. Compute parameter gradients

$$\begin{bmatrix}
-\frac{\partial L(\hat{y},y)}{\partial W^{[\ell]}} = \frac{\partial L(\hat{y},y)}{\partial z^{[\ell]}} \frac{\partial z^{[\ell]}}{\partial W^{[\ell]}} = \delta^{[\ell]} a^{[\ell-1]T} \\
-\frac{\partial L(\hat{y},y)}{\partial b^{[\ell]}} = \frac{\partial L(\hat{y},y)}{\partial z^{[\ell]}} \frac{\partial z^{[\ell]}}{\partial b^{[\ell]}} = \delta^{[\ell]}
\end{bmatrix}$$

Binary Classification Example

$$\begin{bmatrix}
3 \\
3
\end{bmatrix} = \frac{2l(3, 7)}{3}, g'(2^{23}) & \text{STEP 1} \qquad g' = \text{PREDICTED UNSEL} \\
l(g', y) = -\left[(1-y)\log(1-g') + y\log g'\right] & \text{CROSS ENTROPY LOSS} \\
\frac{2l(g', y)}{3g} = \frac{1}{1-g'} - \frac{1}{g'} = \frac{g'-1}{g'} - \frac{1}{g'} + \frac{1}{g'} - \frac{1}{g'$$

Binary Classification Example

$$\frac{\partial L(y_1 \hat{y})}{\partial w^{(3)}} = \int_{0}^{3} \int_{0}^{2} \int_{0}^{7} = (\alpha^{(3)} - y) \alpha^{(2)} T$$

$$\frac{\partial L(y_1 \hat{y})}{\partial w^{(3)}} = \int_{0}^{3} \int_{0}^{2} \int_{$$

Binary Classification Example

[AMER 2:
$$f^{(2)} = f^{(3)} = f^{(3)} = f^{(3)} = f^{(2)} = f^{(3)} = f^{(2)} = f^{(2$$

Training NN with Backpropagation

Given training set $(x_1, y_1), \dots, (x_N, y_N)$ Initialize all parameters $W^{[\ell]}$, $b^{[\ell]}$ randomly, for all layers ℓ Loop

```
Set \Delta_{ij}^{[l]} = 0, for all layers l and indices i, j
                                                                                                  EPOCH
For each training instance (x_k, y_k):
                  Compute a^{[1]}, a^{[2]}, ..., a^{[L]} via forward propagation
                 Compute errors \delta^{[L]} = a^{[L]} - y_k, \delta^{[L-1]}, ... \delta^{[1]} Compute gradients \Delta^{[l]}_{ij} = \Delta^{[l]}_{ij} + a^{[l-1]}_{j} \delta^{[l]}_{i} Contribution of TRAINING EXAMPLE
```

Update weights via gradient step

•
$$W_{ij}^{[\ell]} = W_{ij}^{[\ell]} - \left[\alpha \frac{\Delta_{ij}^{[\ell]}}{N}\right]$$

• Similar for $b_{ij}^{[\ell]}$

Until weights converge or maximum number of epochs is reached

Training Neural Networks

- Randomly initialize weights
- Implement forward propagation to get prediction \widehat{y}_i for any training instance x_i
- Compute loss function $L(\hat{y}_i, y_i)$
- Implement backpropagation to compute partial derivatives $\frac{\partial L(\hat{y}_i, y_i)}{\partial w^{[\ell]}}$ and $\frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$
- Use gradient descent with backpropagation to compute parameter values that optimize loss
- Can be applied to both feed-forward and convolutional nets

Materials

- Stanford tutorial on training Multi-Layer Neural Networks
 - http://ufldl.stanford.edu/tutorial/supervised/Mult iLayerNeuralNetworks/
- Notes on backpropagation by Andrew Ng
 - http://cs229.stanford.edu/notesspring2019/backprop.pdf
- Deep learning notes by Andrew Ng
 - http://cs229.stanford.edu/notes2020spring/cs229-notes-deep learning.pdf

GD for Neural Networks

- Initialization
 - For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random
- Backpropagation
 - Fix learning rate α
 - For all layers ℓ (starting backwards)

•
$$W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial W^{[\ell]}}$$

• $b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$

•
$$b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

This is expensive!

Stochastic Gradient Descent (SGP)

Initialization

- For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random

Backpropagation

- Fix learning rate α
- For all layers ℓ (starting backwards)
 - For all training examples x_i, y_i

$$-W^{[\ell]} = W^{[\ell]} - \alpha \frac{\partial L(\hat{y}_i, y_i)}{\partial W^{[\ell]}}$$
$$-b^{[\ell]} = b^{[\ell]} - \alpha \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

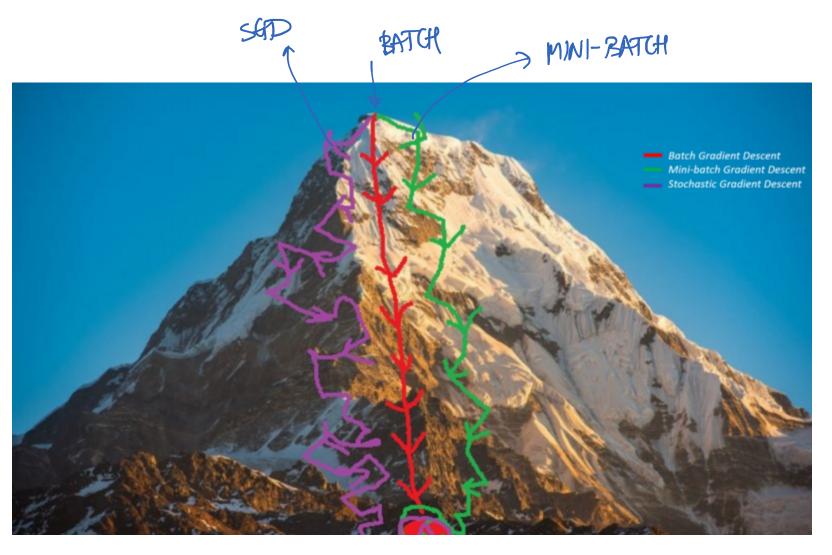
Incremental version of GD

Mini-batch Gradient Descent

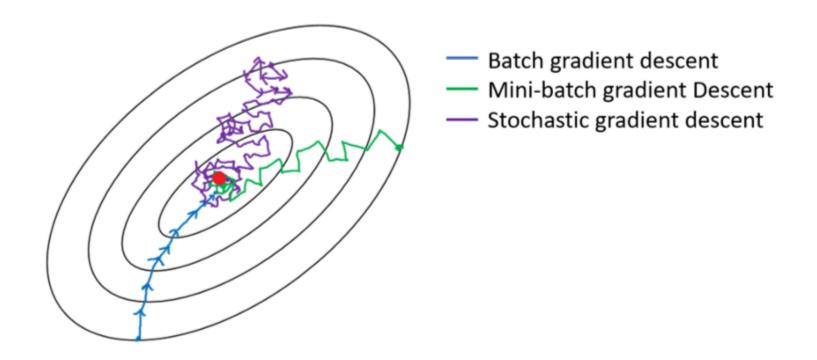
- Initialization
 - For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random
- Backpropagation
 - Fix learning rate α
 - For all layers ℓ (starting backwards)
 - For all batches b of size B with training examples x_{ib} , y_{ib}

$$-W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{B} \frac{\partial L(\hat{y}_{ib}, y_{ib})}{\partial W^{[\ell]}}$$
$$-b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{B} \frac{\partial L(\hat{y}_{ib}, y_{ib})}{\partial b^{[\ell]}}$$

Gradient Descent Variants

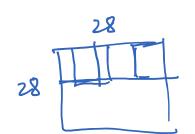


Gradient Descent Variants



CNN Lab: Load Data

```
def load_data():
     print("Loading data")
     (X_train, y_train), (X_test, y_test) ← mnist).load_data()
     X train = X train.astype('float32')
     X test = X test.astype('float32')
    X train /= 255
    X test /= 255
     y train = np utils.to categorical(y train, 10)
     y_test = np_utils.to_categorical(y_test, 10)
     X_train = np.reshape(X_train, (60000, 28, 28, 1)) \rightarrow MATRIX
                                                                             Matrix
     X_{\text{test}} = \text{np.reshape}(X_{\text{test}}, (10000, 28, 28, 1))
                                                                             form
     print("Data Loaded")
     return [X train, X test, y train, y test]
```



Model Architecture

```
def init model():
    start time = time.time()
                                                          100 PARAMS.
                                     10 filters, size 3x3x1
                                                          OUTRUT 26x26x10
    print("Compiling Model")
    model = Sequential()
    model.add(layers Conv2D 10, (3, 3), activation='relu', input_shape=(28, 28, 1)))
→ model.add(layers.MaxPooling2D((2, 2))) → OVTPVT 12x13x10
    model.add(layers(Conv2D(5, (3, 3), activation='relu'))
                                                                  5 filters, size 3x3x10
                                                                    FILTER: 90+1= 91
model.add(layers.MaxPooling2D((2, 2)))
                                                                PARAMS: 91XS = 455
    model.add(layers.Flatten()) → VECTOR
                                                                Vector form
                                                                 OUTPUT MXM X 5
model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))
                                                                  > 5X5X5
    model.summary()
    rms = RMSprop()
    model.compile(loss='categorical crossentropy', optimizer=rms, metrics=['accuracy'])
    print("Model finished"+format(time.time() - start time))
    return model
```

Model Summary

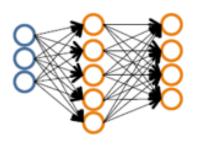
Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 26, 26, 10)	100
max_pooling2d_1 (MaxPooling2	(None, 13, 13, 10)	0
conv2d_2 (Conv2D)	(None, 11, 11, 5)	455
max_pooling2d_2 (MaxPooling2	(None, 5, 5, 5)	0
flatten_1 (Flatten)	(None, 125)	0
dense_1 (Dense)	(None, 64)	8064
dense_2 (Dense)	(None, 10)	650 ======
Total params: 9,269 Trainable params: 9,269 Non-trainable params: 0		

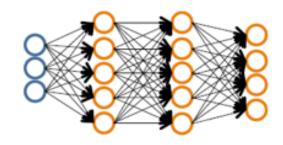
125×64+64=8064 64×90+10=650

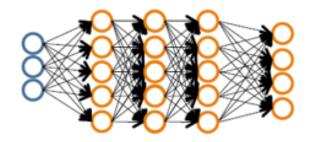
Results

```
totalMemory: 11.90GiB freeMemory: 11.74GiB
2019-03-20 15:23:18.838024: I tensorflow/core/common runtime/gpu/gpu device.cc:1308]
2019-03-20 15:23:19.083693: I tensorflow/core/common runtime/qpu/qpu device.cc:989]
with 11374 MB memory) -> physical GPU (device: 0, name: TITAN X (Pascal), pci bus ic
3s - loss: 0.6465 - acc: 0.8064 - val loss: 0.3107 - val acc: 0.9080
Epoch 2/10
1s - loss: 0.2527 - acc: 0.9233 - val loss: 0.2123 - val acc: 0.9326
Epoch 3/10
1s - loss: 0.1777 - acc: 0.9466 - val loss: 0.1556 - val acc: 0.9550
Epoch 4/10
1s - loss: 0.1386 - acc: 0.9578 - val loss: 0.1303 - val acc: 0.9615
Epoch 5/10
1s - loss: 0.1164 - acc: 0.9649 - val loss: 0.1062 - val acc: 0.9692
Epoch 6/10
1s - loss: 0.0996 - acc: 0.9697 - val loss: 0.1032 - val acc: 0.9677
Epoch 7/10
1s - loss: 0.0882 - acc: 0.9732 - val loss: 0.0798 - val acc: 0.9749
Epoch 8/10
1s - loss: 0.0787 - acc: 0.9758 - val loss: 0.0676 - val acc: 0.9799
Epoch 9/10
1s - loss: 0.0711 - acc: 0.9783 - val loss: 0.0680 - val acc: 0.9804
Epoch 10/10
1s - loss: 0.0664 - acc: 0.9802 - val loss: 0.0652 - val acc: 0.9789
Training duration: 15.190229892730713
Network's test loss and accuracy: [0.065167549764638538, 0.978899999999999]
[alina@dome MNIST]$
```

Overfitting







- The larger the network, the higher the capacity (more model parameters)
- But also more prone to overfitting!

Regularization

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)}_{} + \lambda R(W)$$

 λ = regularization strength (hyperparameter)

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

L2 regularization:
$$R(W) = \sum_k \sum_l W_{k,l}^2$$

L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$
Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

Weight decay

When computing gradients of loss function, regularization term needs to be taken into account

Dropout

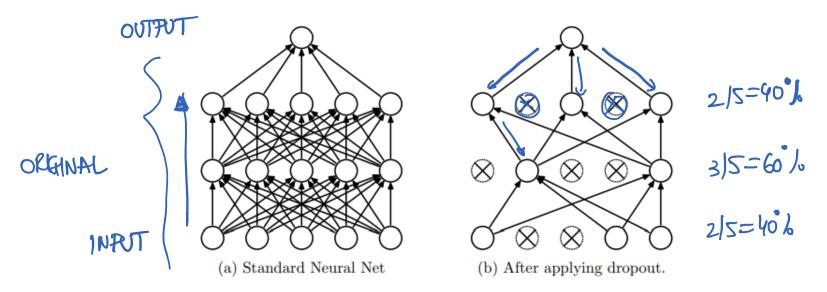


Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

- Regularization technique that has proven very effective for deep learning
- Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15, 2014

Dropout

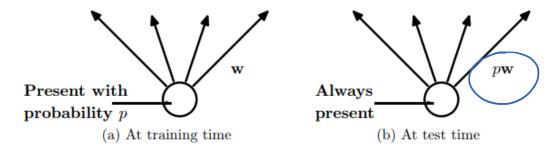


Figure 2: Left: A unit at training time that is present with probability p and is connected to units in the next layer with weights w. Right: At test time, the unit is always present and the weights are multiplied by p. The output at test time is same as the expected output at training time.

- At training time, sample a sub-network and learn weights
 - Keep each neuron with probability p
- At testing time, all neurons are there, but reduce weight by a factor of p

Dropout Implementation

```
def init model():
     start time = time.time()
     print("Compiling Model")
    model = Sequential()
    # Hidden Layer 1
    model.add(Dense(500, input dim=784))
    model.add(Dropout(0.3))
    model.add(Activation('relu'))
                                                                 Dropout
     # Hidden Layer 2
    model.add(Dense(300))
                                                             regularization
    model.add(Dropout(0.3))
    model.add(Activation('relu'))
    model.add(Dense(10))
    model.add(Activation('softmax'))
     rms = RMSprop()
    model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy'])
     print("Model finished"+format(time.time() - start_time))
     return model
```

Results on MNIST

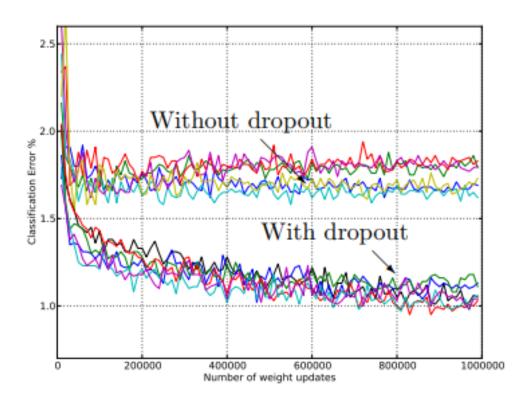


Figure 4 Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

Outline

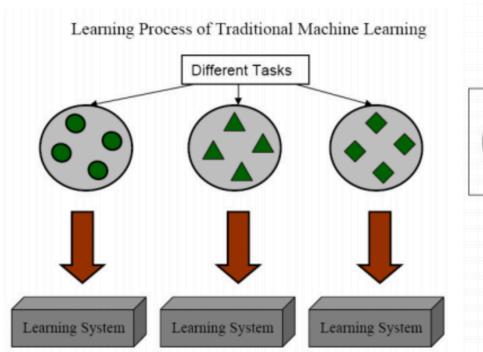
- Backpropagation algorithm
 - Example for 2-layer neural network
- Lab on Convolutional Neural Networks
- Regularization
 - Weight decay (aka ridge regularization)
 - Dropout
- Transfer Learning

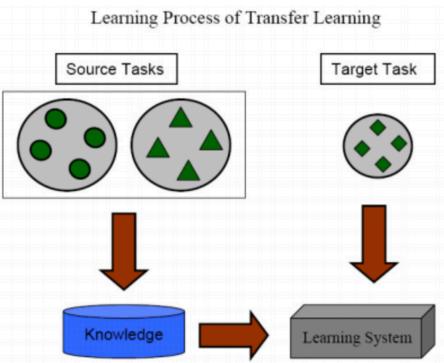
Transfer Learning

- Improvement of learning in a new task through the transfer of knowledge from a related task that has already been learned.
- Weight initialization for CNN

- Two major strategies
 - ConvNet as fixed feature extractor
 - Fine-tuning the ConvNet

Transfer Learning

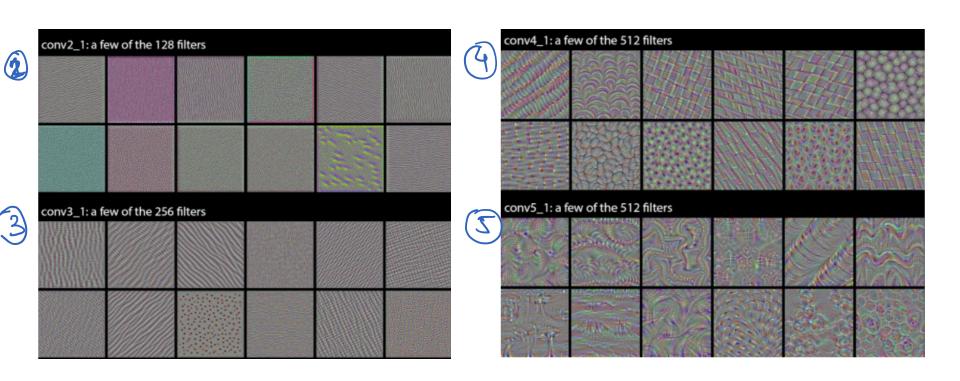




(a) Traditional Machine Learning

(b) Transfer Learning

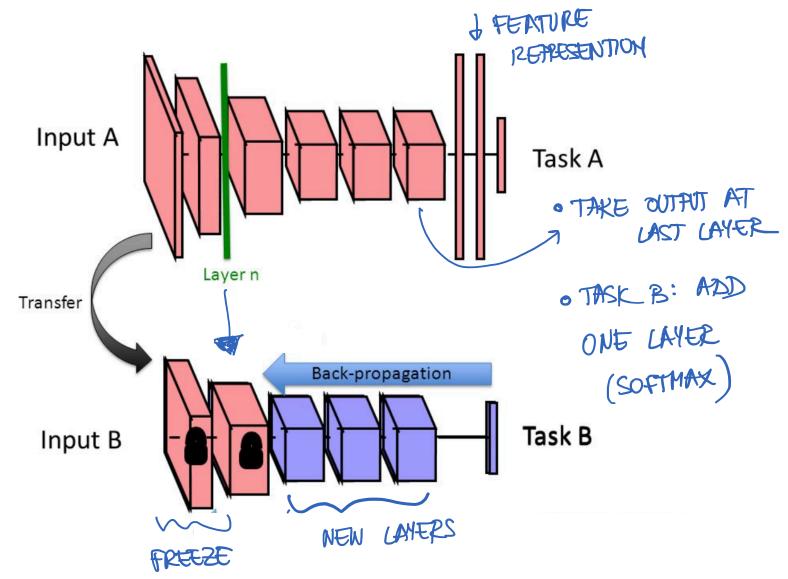
Visualizing Filters in VGG 16



- First layers: general learners
 - Low level notion of edges

- Last layers: specific learners
 - High-level features: eyes, objects

Transfer Learning in NN: Freeze Layers



Methods for Transfer Learning

- Use a pre-trained model (VSVALLY IMAGENET)
 - https://modelzoo.co/
- 1. Use Convolutional Nets as Feature Extractor
 - Take a ConvNet pretrained on ImageNet
 - Remove the last fully-connected layer
 - Train the last layer on new dataset (usually a linear classifier such as logistic regression or softmax)
- 2. Fine-tuning
 - Decide to freeze first n layers
 - Train the remaining layers and stop backpropagation at layer n
 - In the limit fine-tuning can be applied to all layers
 ✓ MATERIAL FOR TASK ★

How to do Transfer Learning

TASKB TASKA &B

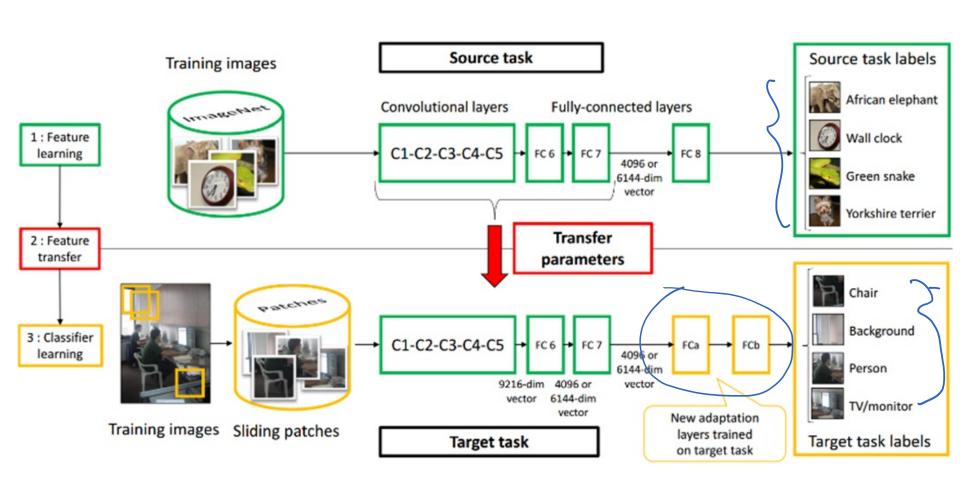
Dataset size	Dataset similarity	Recommendation
Large	Very different	Train model B from scratch, initialize weights from model A
Large	Similar	OK to fine-tune (less likely to overfit)
Small	Very different	Train classifier using the earlier layers (later layers won't help much)
Small	Similar	Don't fine-tune (overfitting). Train a linear classifier

Learning Rates

- Training linear classifier: typical learning rate
- Fine-tuning: use smaller learning rate to avoid distorting the existing weights

Transfer Learning Applications

- Image classification (most common): learn new image classes
- · Text sentiment classification
- Text translation to new languages
- Speaker adaptation in speech recognition
- · Question answering



Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks [Oquab et al. CVPR 2014]

Acknowledgements

- Slides made using resources from:
 - Yann LeCun
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!