DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor, CCIS
Northeastern University

November 12 2020

Exam Review

DS-4400 Course objectives

- Become familiar with machine learning tasks
 - Supervised learning vs unsupervised learning
 - Classification vs Regression
- Study most well-known algorithms and understand their details
 - Regression (linear regression)
 - Classification (Naïve Bayes, decision trees, esnembles, neural networks)
- Learn to apply ML algorithms to real datasets
 - Using existing packages in R and Python
- Learn about security challenges of ML
 - Introduction to adversarial ML

What we covered

Ensembles

- Bagging
- Random forests
- Boosting
- AdaBoost

Deep learning

- Feed-forward Neural Nets
- Architectures
- Forward propagation

Linear classification

- Perceptron
- Logistic regression
- LDA

Non-linear classification

- kNN
- Decision trees
- Naïve Bayes

- Metrics
- Evaluation
- Cross-validation
- Regularization
- Gradient Descent

Linear Regression

Linear algebra

Probability and statistics

ML Models

- Categorization
 - Is it a linear or non-linear?
 - Is it generative or discriminative?
 - Is it an ensemble?
- For each ML model
 - Understand how training is done
 - Take a small example and train a model
 - In class or homework we have done linear regression, Naïve Bayes, decision tree
 - Once you have a model know how to evaluate a point and generate a prediction
 - Example: predict probability by logistic regression model

When to use each model

- Assumptions:
 - LDA assumes Gaussian data distribution
 - Naïve Bayes assumes conditional independence between features given class
- Linear models work well for linearly separable data
- Decision trees work well for categorical data
- Ensembles are powerful models
 - Need a lot of training data available

How to measure performance

- Regression: MSE
- Why we need multiple metrics
 - Accuracy, error
 - Precision, recall
 - Confusion matrix
 - F1 score
 - ROC curves, AUC
- Compute these metrics on small examples

Bias-Variance Tradeoff

- Why learning is hard
- What overfitting means
- How to avoid it
 - Regularization
 - Cross validation to report performance
- How different models improve generalization
 - Decision trees: limit tree depth
 - Linear and logistic regression: Lasso and ridge regularization
 - Ensembles randomize the training data in each model (bootstrap samples)

Type I: Conceptual

- Example 1: Describe difference between classification and regression
- Example 2: What are the two methods to design ensembles and how are they different
- Example 3: Provide advantages and disadvantages, and compare the following:
 - Linear classifiers compared to more complex ones
 - Gradient descent vs closed form solution for linear regression
 - Naïve Bayes versus LDA

Type II: Computational

- Example 1: Given a small dataset, train a particular ML model
 - E.g., linear regression, Naïve Bayes, etc.
 - Evaluate model on some small training and testing data
- Example 2: Given a particular model, describe the training process and count the number of parameters
- Example 3: Compute different metrics: true positives, false positives, precision, recall

Type III: Case Study

• Example: Consider the problem of predicting a patient's risk to a disease. The features include demographic information (address, zip code), as well as measurements from blood test results in the last 2 years. Assume there is a datasets including patients with and without the disease.

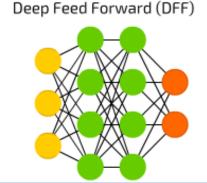
Describe the process to:

- Represent the features in a format suitable for ML
- 2. How would you do feature selection
- 3. Describe what models you would use and why

Neural Network Architectures

Feed-Forward Networks

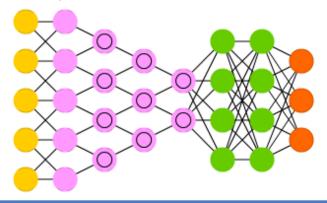
 Neurons from each layer connect to neurons from next layer



Convolutional Networks

- Includes convolution layer for feature reduction
- Learns hierarchical representations

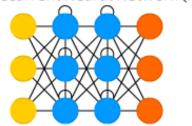
Deep Convolutional Network (DCN)



Recurrent Networks

- Keep hidden state
- Have cycles in computational graph

Recurrent Neural Network (RNN)

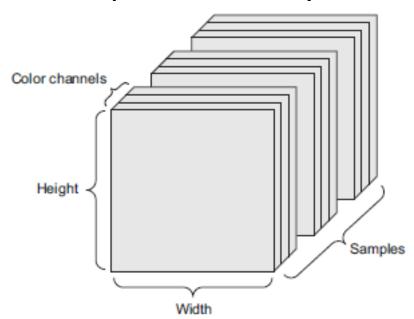


Convolutional Nets

- Particular type of Feed-Forward Neural Nets
 - Invented by [LeCun 89]
- Applicable to data with natural grid topology
 - Time series
 - Images
- Use convolutions on at least one layer
 - Convolution is a linear operation that uses local information
 - Also use pooling operation
 - Used for dimensionality reduction and learning hierarchical feature representations

Image Representation

- Image is 3D "tensor": height, width, color channel (RGB)
- Black-and-white images are 2D matrices: height, width
 - Each value is pixel intensity



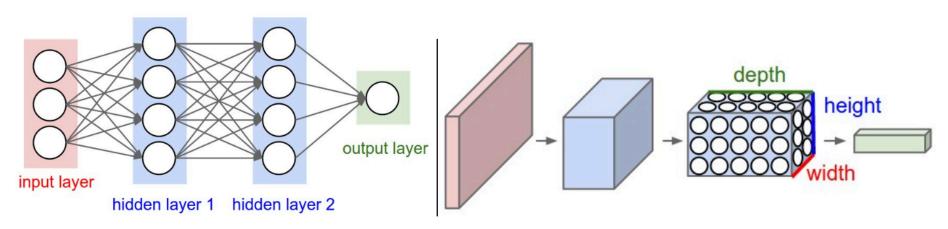
Computer vision principles

- Task: image classification (object identification)
- Translation invariance
 - Classification should work if object appears in different locations in the image => All image regions are treated the same
- Locality
 - Focus on local regions for object detection => computation should be local
- Mathematical operation: Convolution

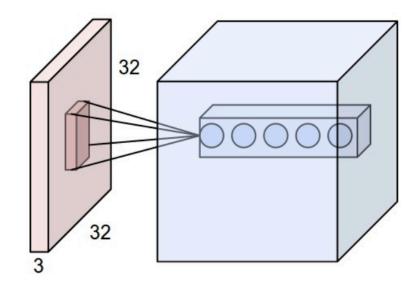
Convolutional Neural Networks

Feed-forward network

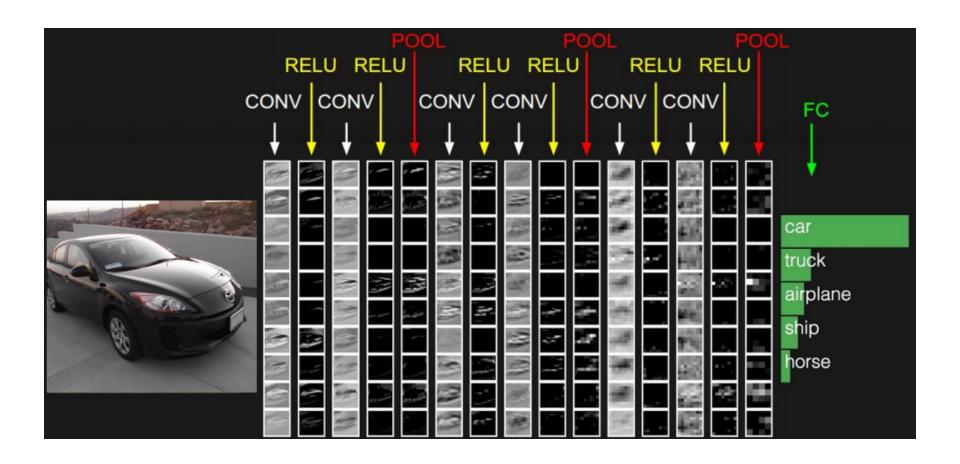
Convolutional network



Filter

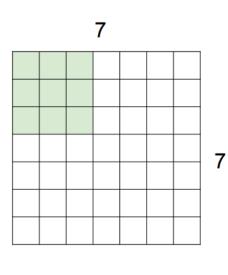


Convolutional Nets

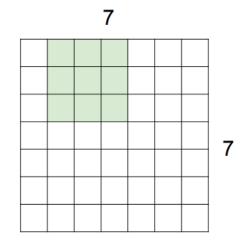


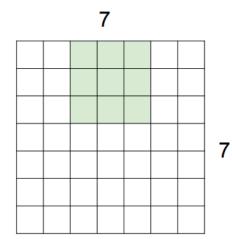
Convolutions

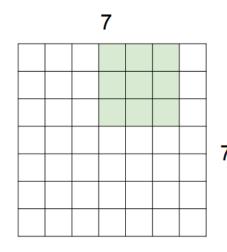
A closer look at spatial dimensions:

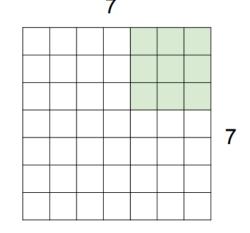


7x7 input (spatially) assume 3x3 filter







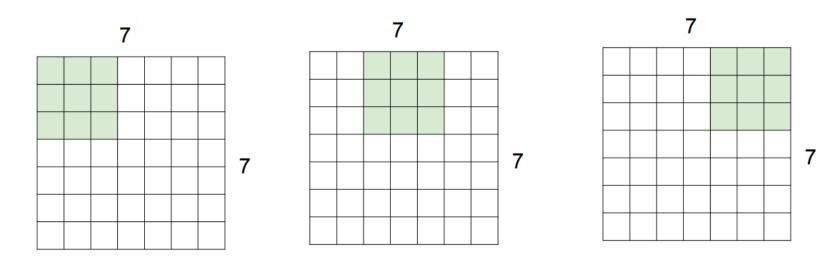


Example

	0	1	2								
	U	_			0	1		19	25		
	3	4	5	*	_		=				
	Ŭ	•	Ŭ	**	2	3		37	43		
	6	7	8		_	Ŭ		0.			
	Ů	'	Ů								
l					F: 1 =				0		
Input					Filter				Output		

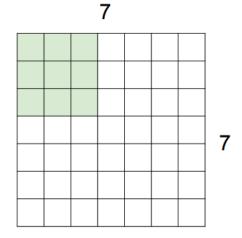
Convolutions with stride

7x7 input (spatially) assume 3x3 filter applied with stride 2



Convolutions with stride

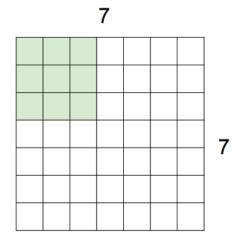
7x7 input (spatially) assume 3x3 filter applied with stride 3?



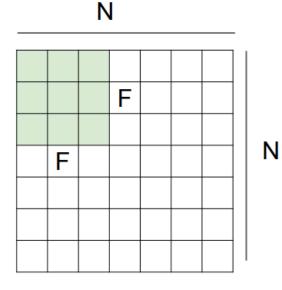
N F N

Convolutions with stride

7x7 input (spatially) assume 3x3 filter applied with stride 3?



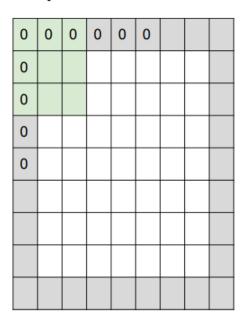
doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.



Output size: (N - F) / stride + 1

Padding

In practice: Common to zero pad the border

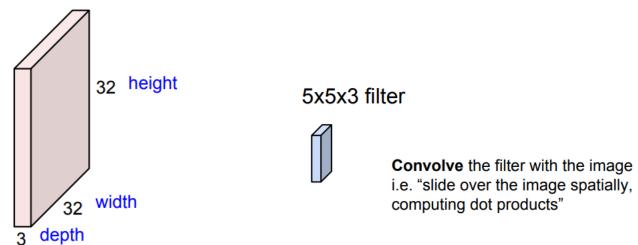


```
e.g. input 7x7
3x3 filter, applied with stride 3
pad with 1 pixel border => what is the output?
```

```
(recall:)
(N - F) / stride + 1
```

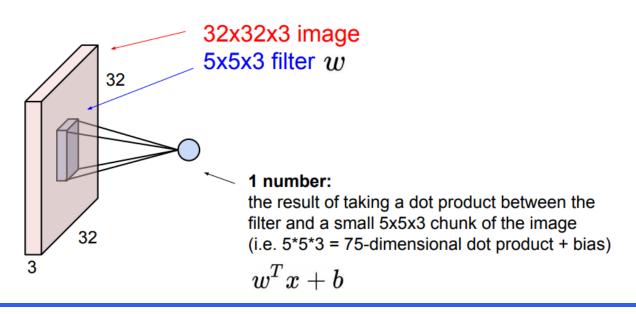
Convolution Layer

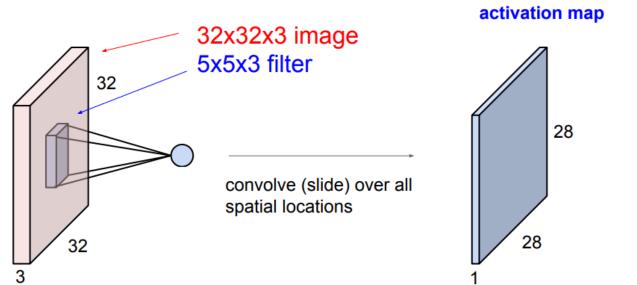
32x32x3 image -> preserve spatial structure



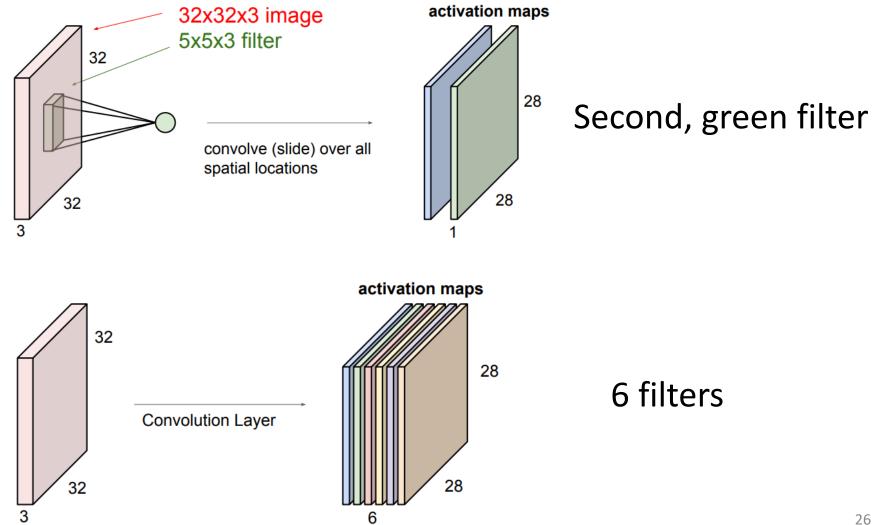
- Depth of filter always depth of input
- Computation is based only on local information

Convolution Layer





Convolution Layer

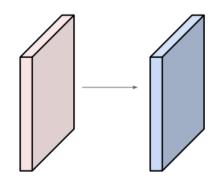


Examples

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2



Output volume size: ?

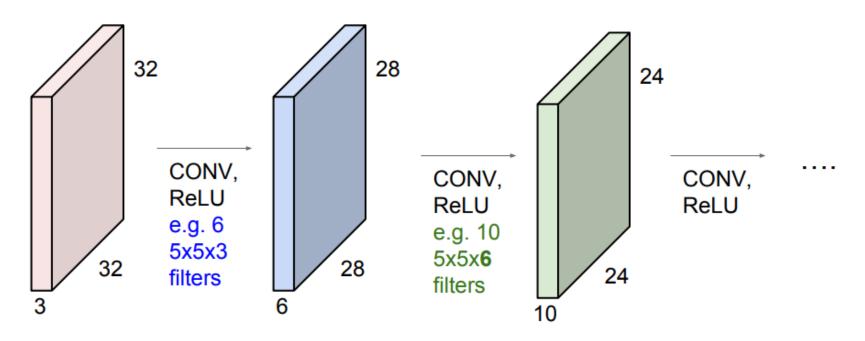
$$(32+2*2-5)/1+1 = 32$$
 spatially, so $32x32x10$

Number of parameters in this layer?

each filter has
$$5*5*3 + 1 = 76$$
 params (+1 for bias) => $76*10 = 760$

Convolutional Nets

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions



Summary: Convolution Layer

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - · the stride S.
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ \;\; H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Convolution layer: Takeaways

- Convolution is a linear operation
 - Reduces parameter space of Feed-Forward Neural Network considerably
 - Capture locality of pixels in images
 - Smaller filters need less parameters
 - Multiple filters in each layer (computation can be done in parallel)
- Convolutions are followed by activation functions
 - Typically ReLU

Acknowledgements

- Slides made using resources from:
 - Yann LeCun
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!