DS 4400

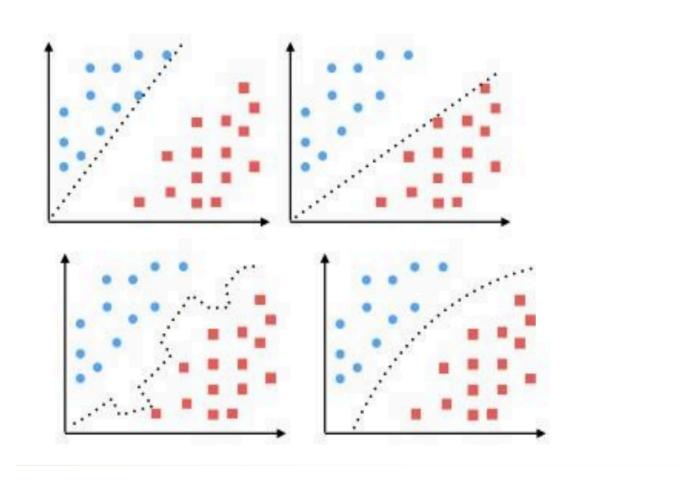
Machine Learning and Data Mining I

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Outline

- Introduction to Deep Learning
- Neural Network Architectures
- Feed Forward Neural Networks
 - Forward Propagation
 - Hyper-parameters
 - Activations

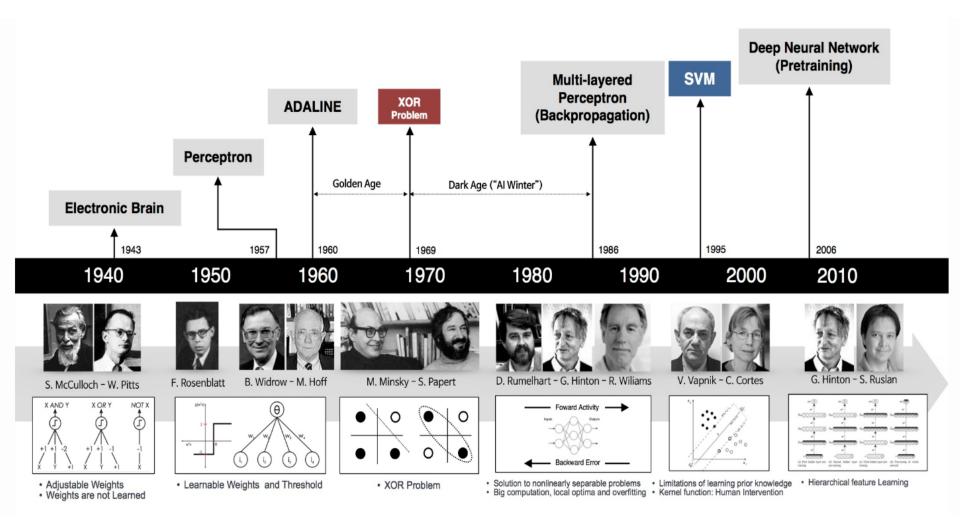
Linear vs Non-Linear Classifiers



Comparing classifiers

Algorithm	Interpretable	Model size	Predictive accuracy	Training time	Testing time
Logistic regression	High	Small	Lower	Low	Low
kNN	Medium	Large	Lower	No training	High
LDA	Medium	Small	Lower	Low	Low
Decision trees	High	Medium	Lower	Medium	Low
Ensembles	Low	Large	High	High	High
Naïve Bayes	Medium	Small	Lower	Medium	Low
Neural Networks	Low	Large	High	High	Low

History of Deep Learning

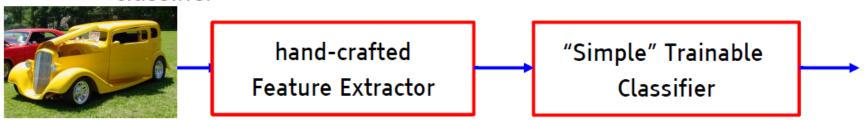


References

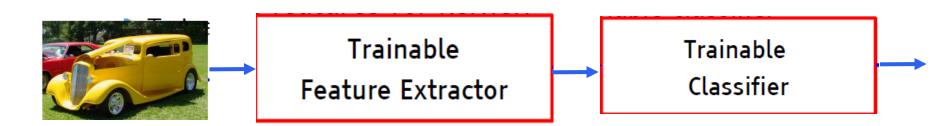
- Deep Learning books
 - https://d2l.ai/ (D2L)
 - https://www.deeplearningbook.org/ (advanced)
- Stanford notes on deep learning
 - http://cs229.stanford.edu/notes/cs229-notesdeep_learning.pdf
- History of Deep Learning
 - https://beamandrew.github.io/deeplearning/2017/02/23/deep learning 101 part1.html

Deep Learning

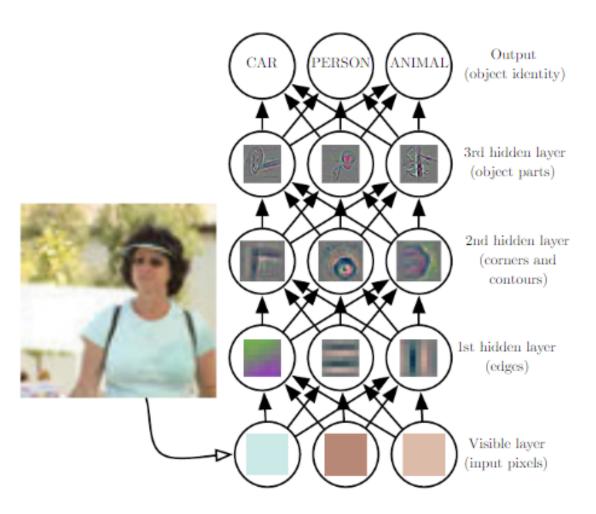
- The traditional model of pattern recognition (since the late 50's)
 - Fixed/engineered features (or fixed kernel) + trainable classifier



End-to-end learning / Feature learning / Deep learning



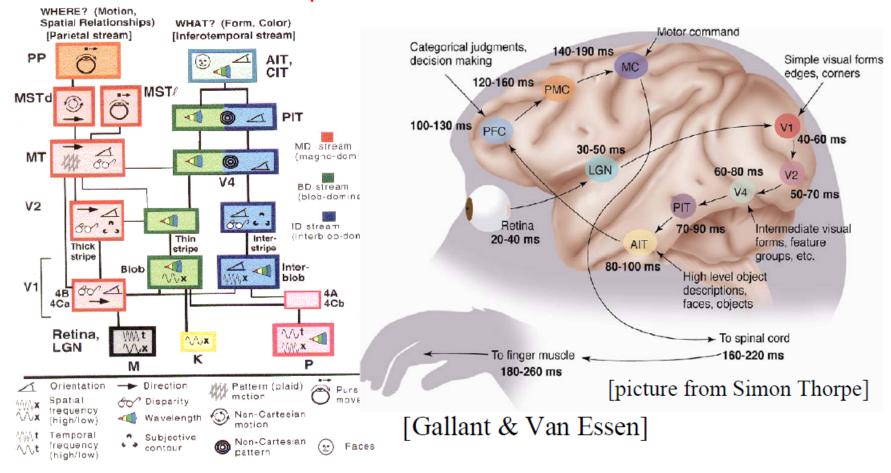
Learning Representations



Deep Learning addresses the problem of learning hierarchical representations

The Visual Cortex is Hierarchical

- The ventral (recognition) pathway in the visual cortex has multiple stages
- Retina LGN V1 V2 V4 PIT AIT
- Lots of intermediate representations

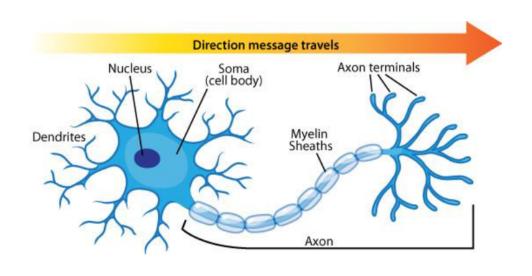


Neural Function

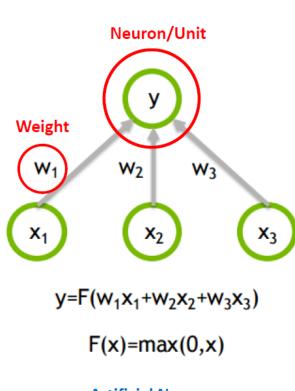
- Brain function (thought) occurs as the result of the firing of neurons
- Neurons connect to each other through synapses, which propagate action potential (electrical impulses) by releasing neurotransmitters
 - Synapses can be excitatory (potential-increasing) or inhibitory (potential-decreasing), and have varying activation thresholds
 - Learning occurs as a result of the synapses' plasticicity:
 They exhibit long-term changes in connection strength
- There are about 10¹¹ neurons and about 10¹⁴ synapses in the human brain!

Analogy to Human Brain

Human Brain



Biological Neuron

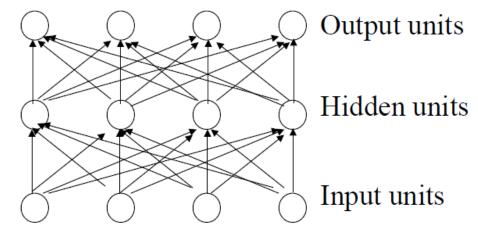


Artificial Neuron

Neural Networks

- Origins: Algorithms that try to mimic the brain.
- Very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
- Artificial neural networks are not nearly as complex or intricate as the actual brain structure

Neural Networks



Layered feed-forward network

- Neural networks are made up of nodes or units, connected by links
- Each link has an associated weight and activation level
- Each node has an input function (typically summing over weighted inputs), an activation function, and an output

Example

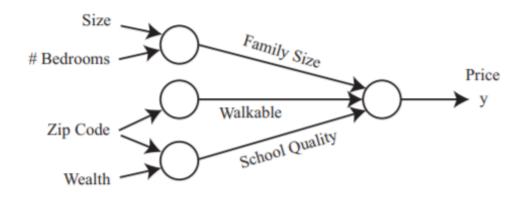
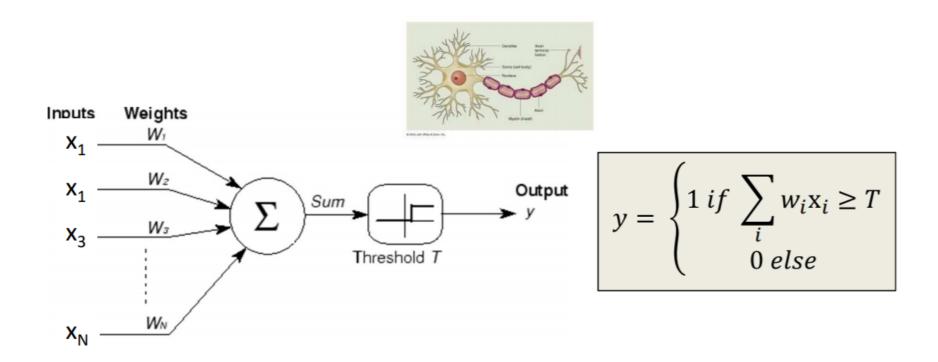


Figure 2: Diagram of a small neural network for predicting housing prices.

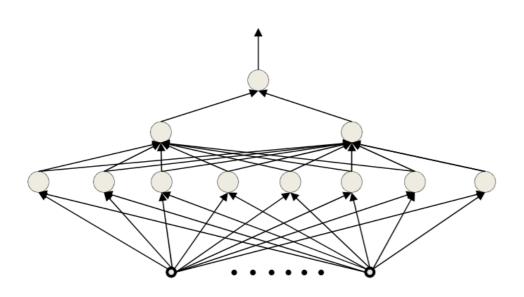
- Provide as input only training data: input and label
- Neural Networks automatically learn intermediate features!

Perceptron

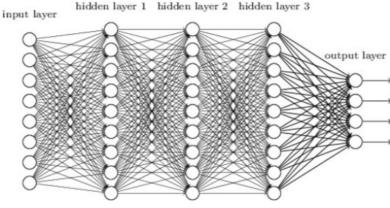


- A threshold unit
 - "Fires" if the weighted sum of inputs exceeds a threshold

Multi-Layer Perceptron



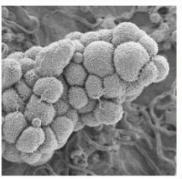
Deep neural network



- A network of perceptrons
 - Generally "layered"

Deep Learning Applications

DEEP LEARNING EVERYWHERE



INTERNET & CLOUD

Image Classification
Speech Recognition
Language Translation
Language Processing
Sentiment Analysis
Recommendation

MEDICINE & BIOLOGY

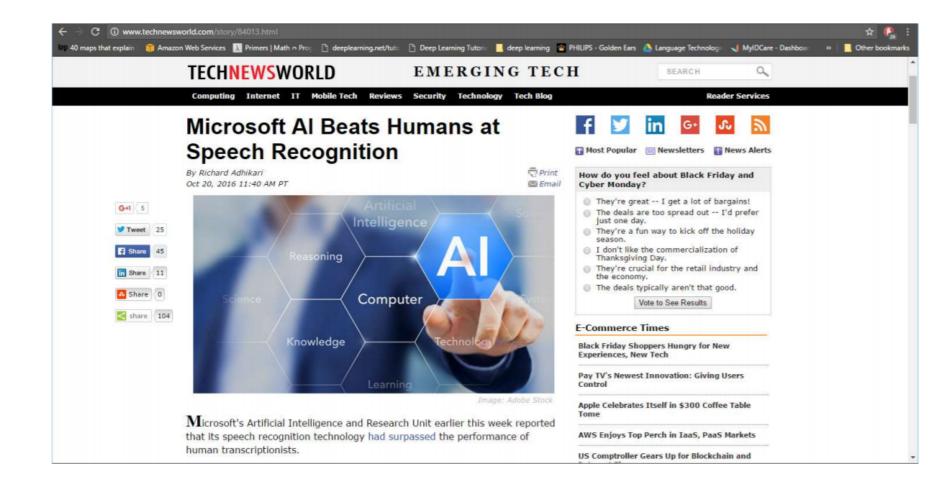
Cancer Cell Detection Diabetic Grading Drug Discovery MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery **AUTONOMOUS MACHINES**

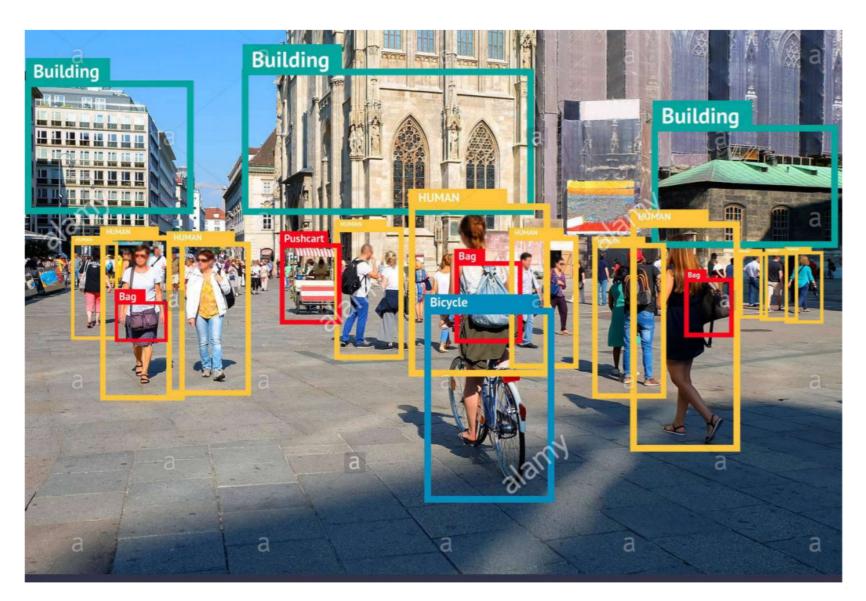
Pedestrian Detection Lane Tracking Recognize Traffic Sign

Success stories: Speech recognition



Success stories: Machine Translation

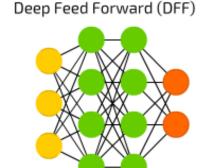
Success stories: Image segmentation



Neural Network Architectures

Feed-Forward Networks

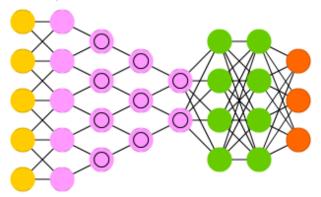
 Neurons from each layer connect to neurons from next layer



Convolutional Networks

- Includes convolution layer for feature reduction
- Learns hierarchical representations

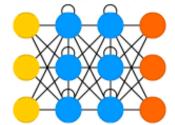
Deep Convolutional Network (DCN)



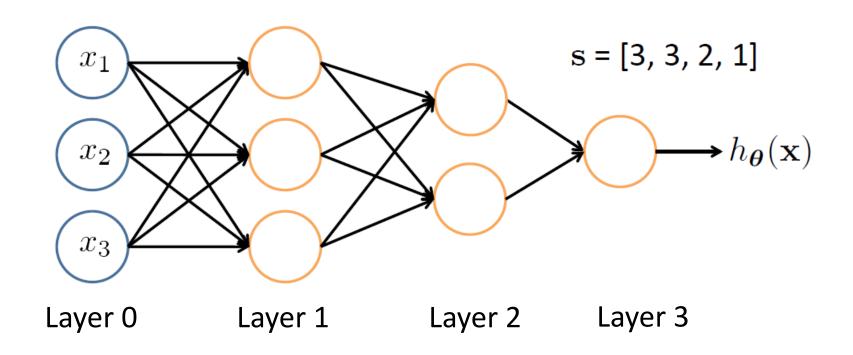
Recurrent Networks

- Keep hidden state
- Have cycles in computational graph

Recurrent Neural Network (RNN)



Feed-Forward Networks



 ${\it L}$ denotes the number of layers

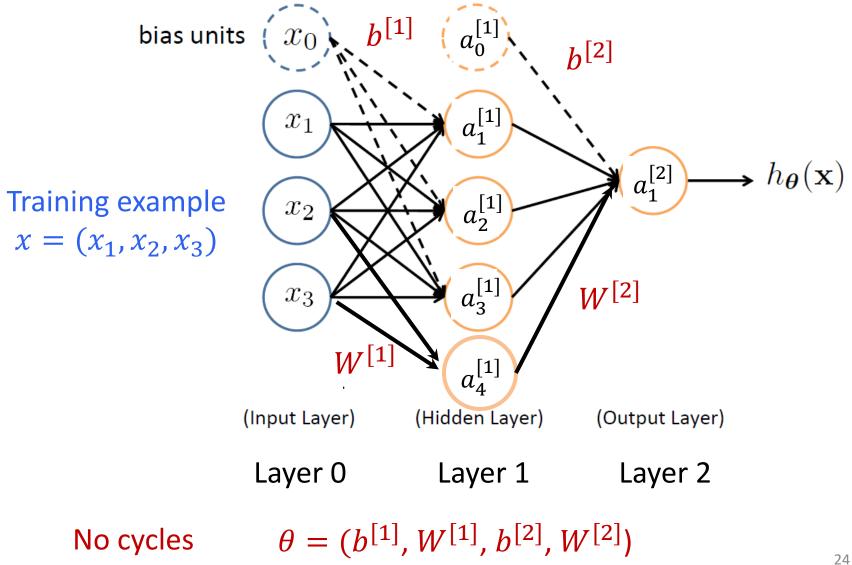
 $\mathbf{s} \in \mathbb{N}^{+L}$ contains the numbers of nodes at each layer

- Not counting bias units
- Typically, $s_0=d$ (# input features) and $s_{L-1}\!=\!K$ (# classes)

Feed-Forward NN

- Hyper-parameters
 - Number of layers
 - Architecture (how layers are connected)
 - Number of hidden units per layer
 - Number of units in output layer
 - Activation functions
- Other
 - Initialization
 - Regularization

Feed-Forward Neural Network



Vectorization

$$z_1^{[1]} = W_1^{[1]} \quad x + b_1^{[1]} \quad \text{and} \quad a_1^{[1]} = g(z_1^{[1]})$$

$$\vdots \qquad \qquad \vdots \qquad \vdots$$

$$z_4^{[1]} = W_4^{[1]} \quad x + b_4^{[1]} \quad \text{and} \quad a_4^{[1]} = g(z_4^{[1]})$$

$$\underbrace{\begin{bmatrix} z_1^{[1]} \\ \vdots \\ \vdots \\ z_4^{[1]} \end{bmatrix}}_{z^{[1]} \in \mathbb{R}^{4 \times 1}} = \underbrace{\begin{bmatrix} -W_1^{[1]} \\ -W_2^{[1]} \\ \vdots \\ -W_4^{[1]} \end{bmatrix}}_{W^{[1]} \in \mathbb{R}^{4 \times 3}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{x \in \mathbb{R}^{3 \times 1}} + \underbrace{\begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ \vdots \\ b_4^{[1]} \end{bmatrix}}_{b^{[1]} \in \mathbb{R}^{4 \times 1}}$$

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

 $a^{[1]} = g(z^{[1]})$

Linear

Non-Linear

Vectorization

Output layer

$$z_1^{[2]} = W_1^{[2]} a^{[1]} + b_1^{[2]}$$
 and $a_1^{[2]} = g(z_1^{[2]})$

- - - - -

$$\underbrace{z^{[2]}}_{1\times 1} = \underbrace{W^{[2]}}_{1\times 4} \underbrace{a^{[1]}}_{4\times 1} + \underbrace{b^{[2]}}_{1\times 1} \quad \text{and} \quad \underbrace{a^{[2]}}_{1\times 1} = g(\underbrace{z^{[2]}}_{1\times 1})$$

Review

- Feed-Forward Neural Networks are the common neural networks architectures
 - Fully connected networks are called Multi-Layer
 Perceptron
- Input, output, and hidden layers
 - Linear matrix operations followed by non-linear activations at every layer
- Activations:
 - Non-linear functions
- Forward propagation: process of evaluating input through the network

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Yann LeCun
- Thanks!