DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

- Projects
 - We have received 21 projects
 - You will get an assigned TA
 - Project milestone will be due on November 24
 - Report of 3-4 pages on progress and challenges
- HW4 will be out soon
 - Due on Nov 17
- Exam is on Thursday, November 19
 - Work on assignments and review class lectures
 - Will share a list of topics

Outline

- Ensemble learning
 - Review
- Boosting
 - General method
 - AdaBoost algorithm
 - Boosting vs Bagging
- Introduction to Deep Learning

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

IN THE MODELS

- Classifiers should make different mistakes
- Can have different types of base learners

How to Achieve Diversity

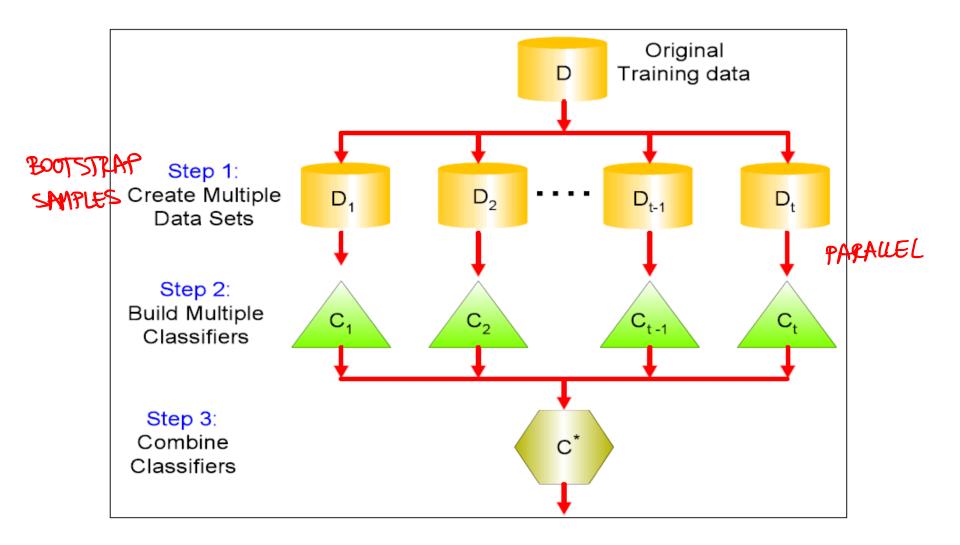
- Avoid overfitting
- Vary the training data
- Features are noisy
- → Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests) BOOT STRATES

 SAMPLES
- Boosting (e.g., AdaBoost)

Bagging



Random Forests

SAGGING FOR

- Construct decision trees on bootstrap replicas
 - Restrict the node decisions to a <u>small subset of features</u> picked randomly for each node
- Do not prune the trees
 - Estimate tree performance on out-of-bootstrap data
- Average the output of all trees (or choose mode decision)

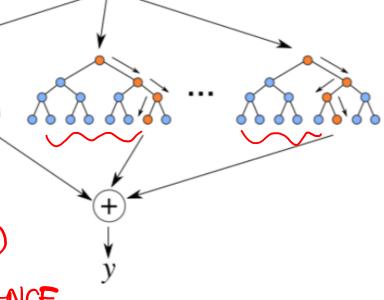
choose mode decision)

ENSEMBLES

REDUCE

VARIANCE

OVERFIT



 A meta-learning algorithm with great theoretical and empirical performance

 Turns a base learner (i.e., a "weak hypothesis") into a high performance classifier

 Creates an ensemble of weak hypotheses by repeatedly emphasizing mispredicted instances

Adaptive Boosting Freund and Schapire 1997

Overview of AdaBoost

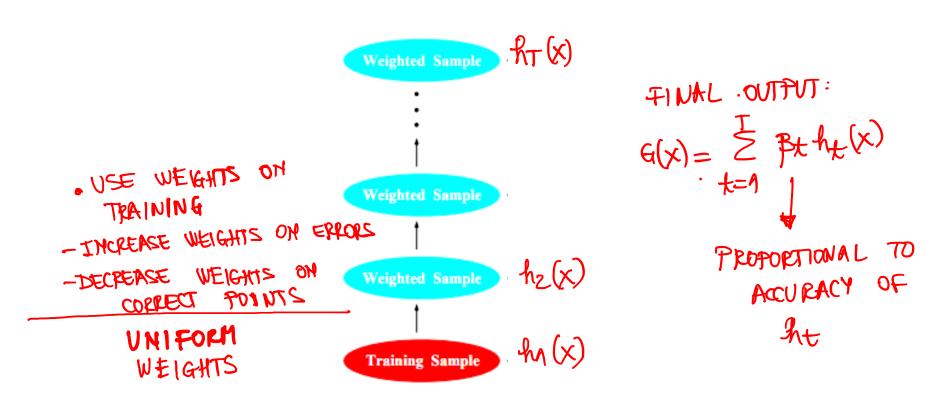


FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

Boosting [Shapire '89]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration t:
 - weight each training example by how incorrectly it was classified

 - Learn a weak hypothesis h_t A strength for this hypothesis β_t
- Final classifier:

$$H(x) = sign(\sum \beta_t h_t(x))$$

If each weak learner h_t is slightly better than random guessing ($\varepsilon_t < 0.5$), then training error of AdaBoost decays exponentially fast in number of rounds T.

Mic?-1,13 Xi: TRAINING EXAMPLES

AdaBoost

1: Initialize a vector of n uniform weights \mathbf{w}_1

2: **for**
$$t = 1, ..., T$$

- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t

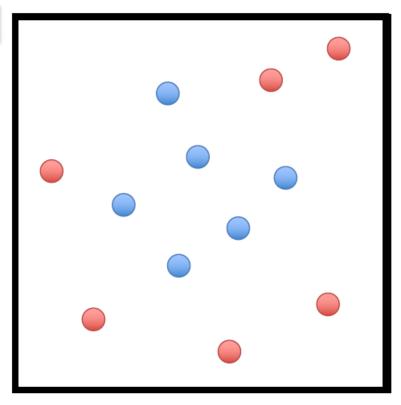
5: Choose
$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



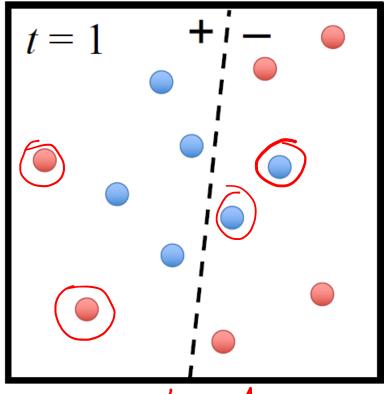
Size of point represents the instance's weight

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- Train model h_t on X, y with weights \mathbf{w}_t 3:
- Compute the weighted training error of h_t
- Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ 5:
- Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} h_{t}(\mathbf{x})\right)$$



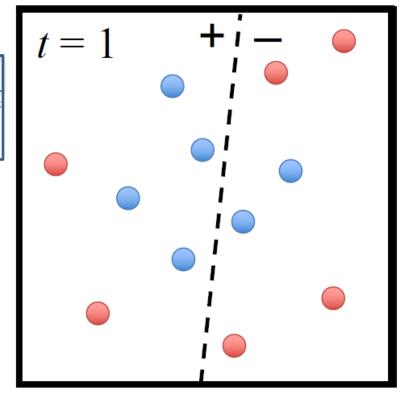
$$\varepsilon_1 = \frac{4}{12} = \frac{1}{3}$$

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- Train model h_t on X, y with weights \mathbf{w}_t 3:
- Compute the weighted training error of h_t
- Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ 5:
- Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



If
$$\xi$$
 increases \Rightarrow \Re decreases
$$\Re t = \frac{1}{2} \ln \left(\frac{1}{\xi \xi} - 1 \right)$$

$$\Re t = \operatorname{MEASURES} \quad \operatorname{IMFORTANCE} \quad \operatorname{OF} \quad \Re t$$

t=1

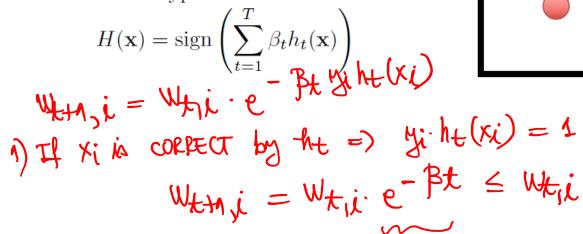
- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- Train model h_t on X, y with weights \mathbf{w}_t 3:
- Compute the weighted training error of h_t 4:
- Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ 5:
- Update all instance weights: 6:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

$$\vdots = Whi \cdot \mathbf{e} - \beta_t W h_t(\mathbf{x})$$

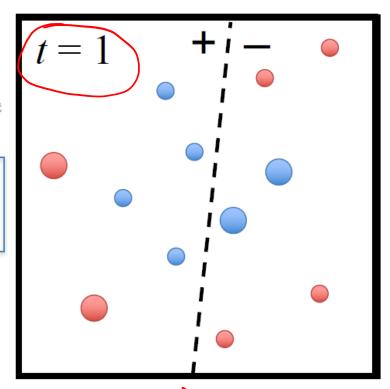


- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- Train model h_t on X, y with weights \mathbf{w}_t 3:
- Compute the weighted training error of h_t 4:
- Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ 5:
- Update all instance weights: 6:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



2) II Xi IS MISCLASSIFIED BY the =) Mith
$$\chi(x_i) = 1$$

When $\chi = \text{While} e^{\text{Pht}} \geqslant \text{While}$

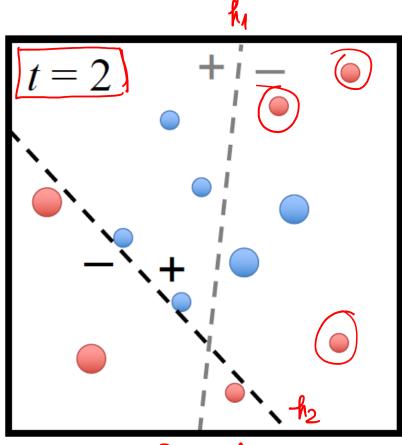
(7) $\chi(x_i) = 1$
 $\chi(x_i) = 1$
 $\chi(x_i) = 1$
 $\chi(x_i) = 1$
 $\chi(x_i) = 1$

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



$$\xi_{2} = \frac{3}{12} = \frac{4}{4}$$

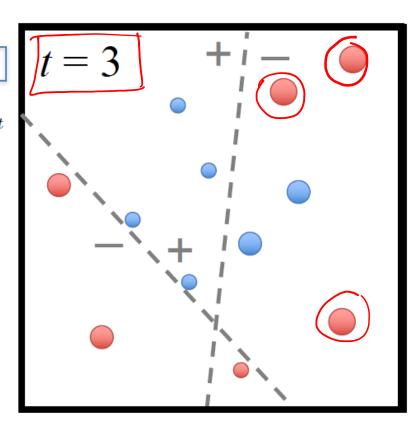
$$\xi_{2} = \frac{1}{2} \ln \left(\frac{1 - \xi_{2}}{\xi_{2}} \right)$$

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

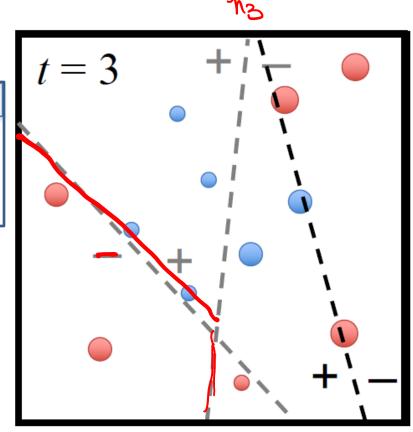


- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- Compute the weighted training error of h_t
- Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- Update all instance weights: 6:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- Normalize \mathbf{w}_{t+1} to be a distribution 7:
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



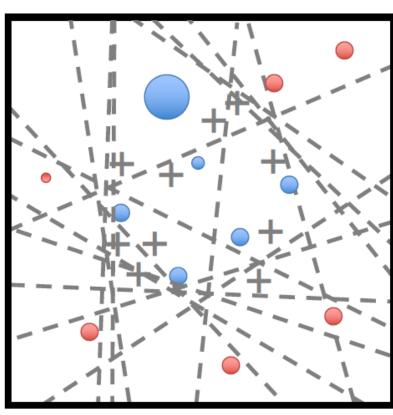
- Compute importance of hypothesis β_t Update weights w_t

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

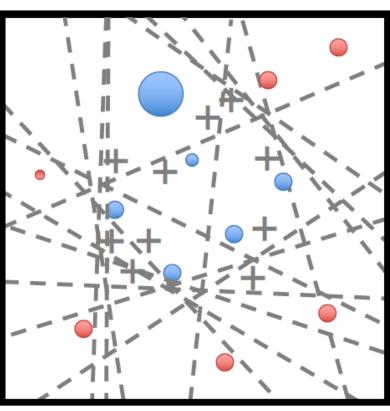


- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



- Final model is a weighted combination of members
 - Each member weighted by its importance

INPUT: training data $X, y = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, the number of iterations T

- 1: Initialize a vector of n uniform weights $\mathbf{w}_1 = \left[\frac{1}{n}, \dots, \frac{1}{n}\right]$
 - 2: **for** t = 1, ..., T
- \longrightarrow 3: Train model h_t on X, y with instance weights \mathbf{w}_t
 - 4: Compute the weighted training error rate of h_t :

$$\epsilon_t = \sum_{i: y_i \neq h_t(\mathbf{x}_i)} \widehat{w_{t,i}} \in [0, 1]$$

- S: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ MFORTANCE OF ht
- → 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right) \quad \forall i = 1,\dots, n$$

 \rightarrow 7: Normalize \mathbf{w}_{t+1} to be a distribution:

wormanize
$$\mathbf{W}_{t+1}$$
 to be a distribution:
$$w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^{n} w_{t+1,j}} \quad \forall i = 1, \dots, n \qquad \sum_{k=1}^{n} \mathbf{W}_{t+1,k} = \mathbf{1}$$

- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

BINARY

Train with Weighted Instances

TRAINING
$$x_1, \dots, x_N$$
 $x_1, x_1, x_2, x_2, x_3, \dots, x_N$
 $x_1, x_1, x_2, x_2, x_1, \dots, x_N$
 $x_1, x_1, x_2, x_1, x_1, \dots, x_N$
 $x_1, x_1,$

Train with Weighted Instances

- For algorithms like logistic regression, can simply incorporate weights w into the cost function
 - Essentially, weigh the cost of misclassification differently for each instance

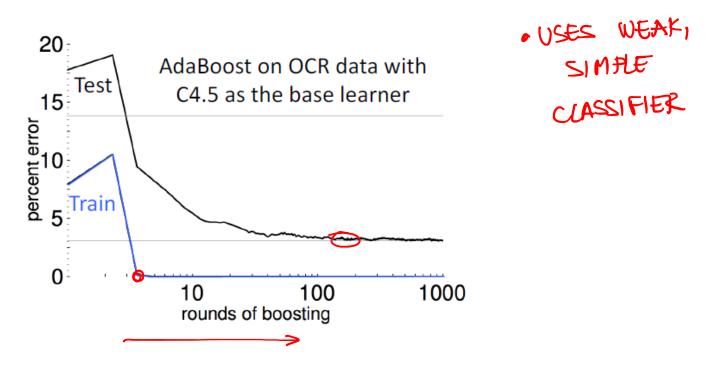
$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} w_i [y_i \log h_{\boldsymbol{\theta}}(\mathbf{x}_i) + (1 - y_i) \log (1 - h_{\boldsymbol{\theta}}(\mathbf{x}_i))] + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

- For algorithms that don't directly support instance weights (e.g., ID3 decision trees, etc.), use weighted bootstrap sampling
 - Form training set by resampling instances with replacement according to w

Properties

- If a point is repeatedly misclassified
 - Its weight is increased every time
 - Eventually it will generate a hypothesis that correctly predicts it
- In practice AdaBoost does not typically overfit
- Does not use explicitly regularization

Resilience to overfitting



- Empirically, boosting resists overfitting
- Note that it continues to drive down the test error even AFTER the training error reaches zero

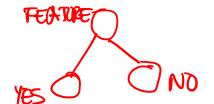
Increases confidence in prediction when adding more rounds

Base Learner Requirements

- AdaBoost works best with "weak" learners
 - Should not be complex

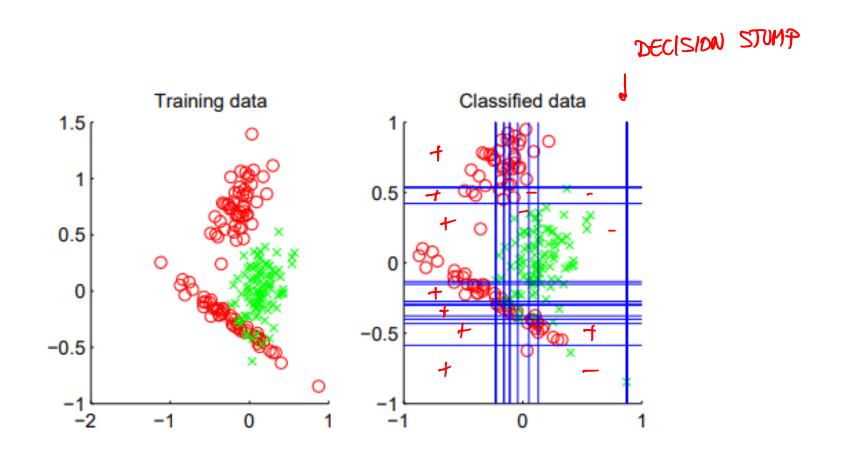
BOOSTING REDUCES
BIAS

- Typically high bias classifiers
- Works even when weak learner has an error rate just slightly under 0.5 (i.e., just slightly better than random)
 - Can prove training error goes to 0 in O(log n) iterations
- Examples:
 - Decision stumps (1 level decision trees)



- Depth-limited decision trees
- Linear classifiers

AdaBoost with Decision Stumps



AdaBoost in Practice

Strengths:

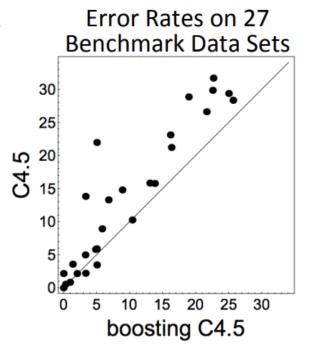
- Fast and simple to program
- CROSS-VALIDATION. St $\leq \frac{\Lambda}{2}$ No parameters to tune (besides T)
- No assumptions on weak learner

When boosting can fail:

- Given insufficient data
- Overly complex weak hypotheses
- Can be susceptible to noise
- When there are a large number of outliers

Boosted Decision Trees

- Boosted decision trees are one of the best "off-the-shelf" classifiers
 - i.e., no parameter tuning
- Limit member hypothesis complexity by limiting tree depth
- Gradient boosting methods are typically used with trees in practice



"AdaBoost with trees is the best off-the-shelf classifier in the world" -Breiman, 1996 (Also, see results by Caruana & Niculescu-Mizil, ICML 2006)

Bagging vs Boosting

	BAGGING	BOOSTING
VARIANCE	~ SAHE	J HOPE COMPLEX
BIAS	COMPLEX	SINPLE DECISION STUMPS
nodels	DECISION TREES BOOTSTRAP SAMPLES LUBSET OF FEATURES UNIFORM CONTRIBUTION	WEIGHTING TRAINING EXAMPLES
DIVERSITY		WEIGHTED CONTRIBUTION
OUTLIERS	MORE RESILIENT	
		20

Bagging vs Boosting

Bagging	vs.	Boosting
Resamples data points		Reweights data points (modifies their distribution)
Weight of each classifier is the same		Weight is dependent on classifier's accuracy
Only variance reduction		Both bias and variance reduced – learning rule becomes more complex with iterations
Applicable to complex models with low bias, high variance		Applicable to weak models with high bias, low variance

Review Ensembles

- Ensemble learning are powerful learning methods
 - Better accuracy than standard classifiers
- Bagging uses bootstrapping (with replacement), trains T models, and averages their prediction
 - Random forests vary training data and feature set at each split
- Boosting is an ensemble of T weak learners that emphasizes mis-predicted examples
 - AdaBoost has great theoretical and experimental performance
 - Can be used with linear models or simple decision trees (stumps, fixed-depth decision trees)

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!