DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Outline

- Ensemble learning
- Bagging
 - Bootstrap samples
 - Random Forest algorithm
- Boosting
 - General method
 - AdaBoost algorithm

Ensemble Learning

Consider a set of classifiers $h_1, ..., h_L$ weighted Average

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

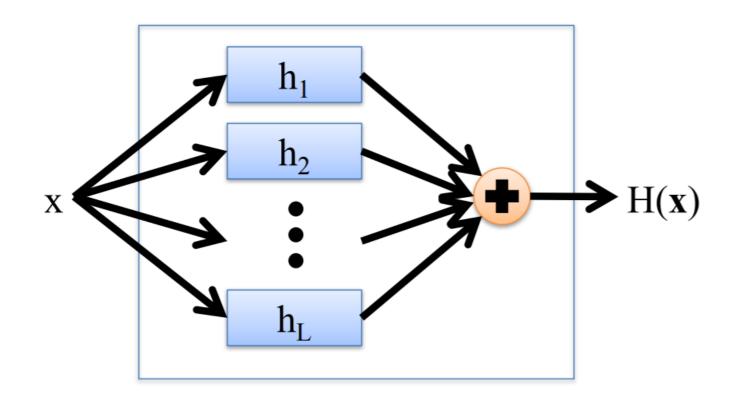
 CLASSIFICATION NOTING (WEIGHTED)

 ANG. OF PROPE

Successful ensembles require diversity

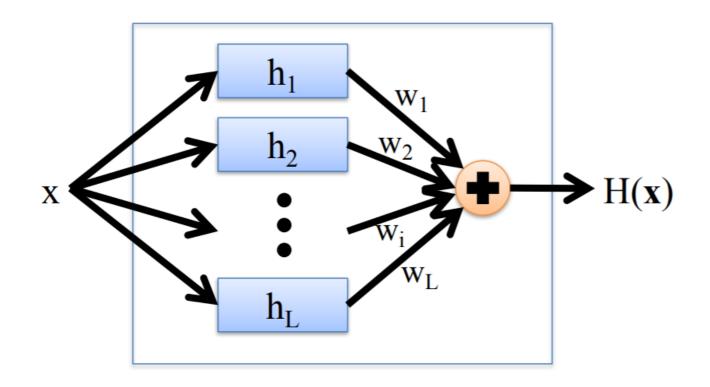
- Classifiers should make different mistakes
- Can have different types of base learners

Combining Classifiers: Averaging



Final hypothesis is a simple vote of the members

Combining Classifiers: Weighted Averaging



 Coefficients of individual members are trained using a validation set

Ensembles Reduce Error

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\varepsilon = 0.35$
- Assume independence among classifiers
- Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Ensembles Reduce Variance

Moniform Threference of classifier

$$\begin{aligned}
&\text{tor}(XY) = \text{for}(X) + \text{for}(Y) \\
&\text{for}(XX) = 0^2
\end{aligned}
\quad
&\text{for}(XY) = \text{for}(X) + \text{for}(Y)$$

$$&\text{for}(XX) = 0^2
\end{aligned}
\quad
&\text{for}(XX) = 0^2$$

$$&\text{for}(XX) = 0^2
\end{aligned}
\quad
&\text{for}(XX) = 0^2$$

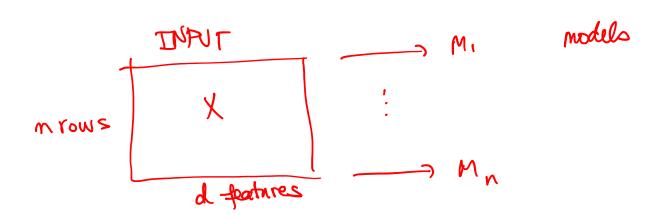
$$&\text{for}(XX) =$$

How to Achieve Diversity

NPUT: TRAINING DATA

N VARY THE TRAINING DATA

2) VARY THE FEATURE SET



How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

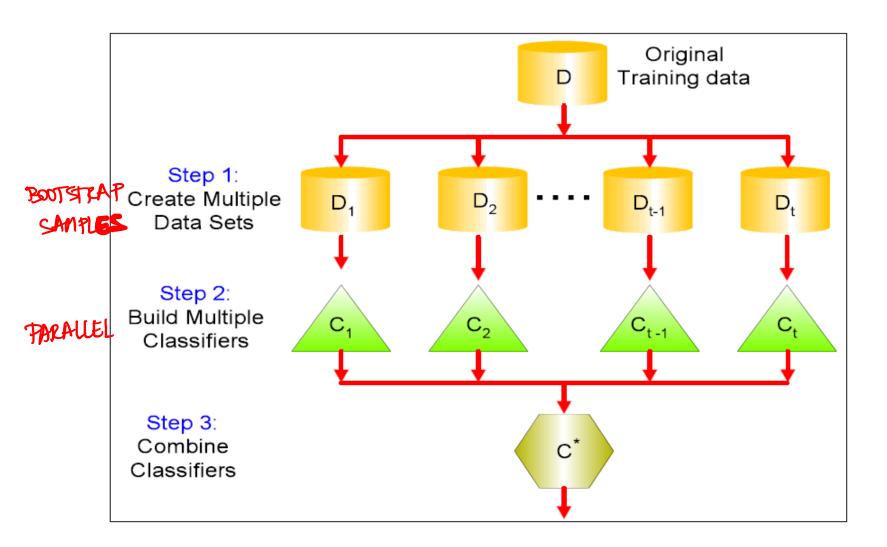
Bagging

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.

Bagging:

- Create k bootstrap samples $D_1 \dots D_k$.
- Train distinct classifier on each D_i .
- Classify new instance by majority vote / average.

General Idea

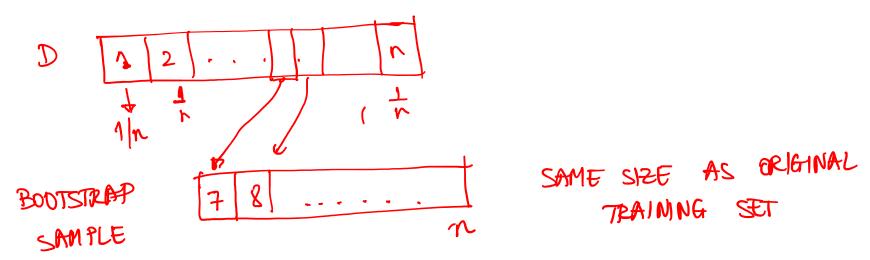


Example of Bagging

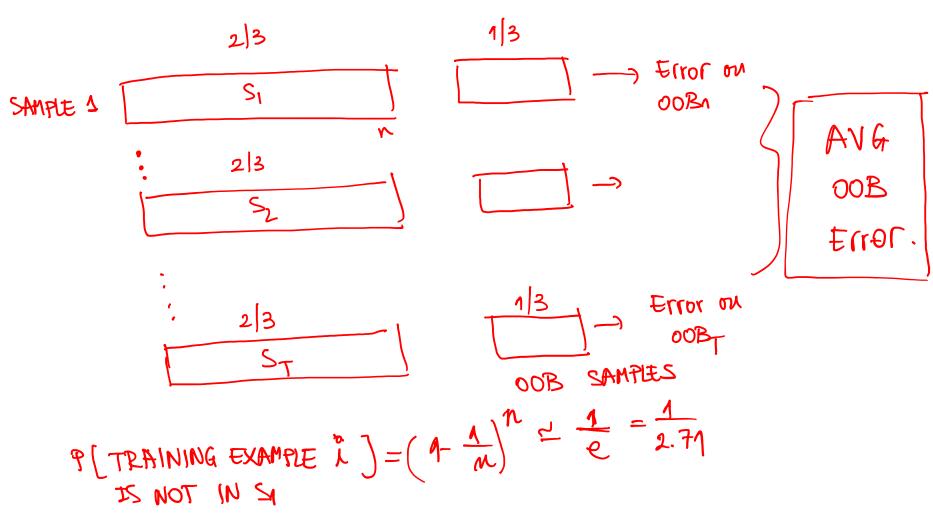
Sampling with replacement

Data ID					Training Data						
->	Original Data	1	2	3	4	5	6	7	8	9	10
	Bagging (Round 1)	7	8	(10)	8	2	5	10	(10)	5	9
	Bagging (Round 2)	1	4	9	1	2	3	2	_	3	2
—	Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Sample each training point with probability 1/n
- Out-Of-Bag (OOB) observation: point not in sample



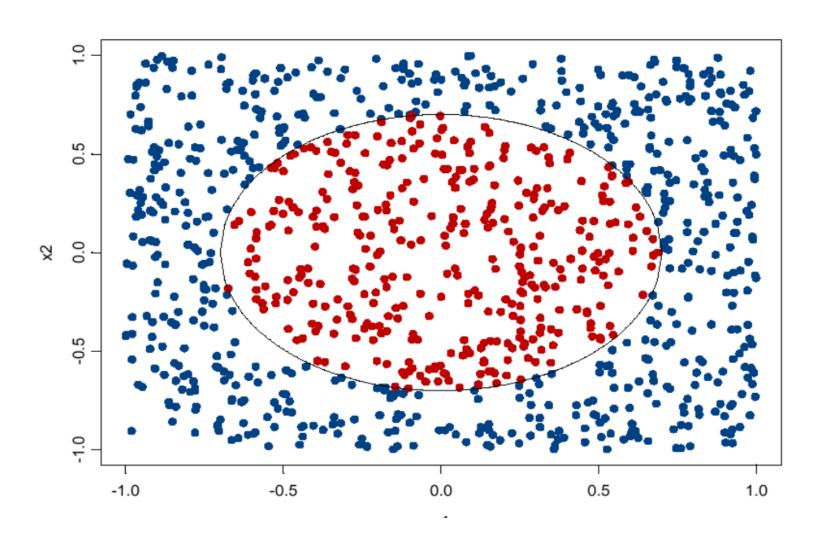
Bootstrap Samples



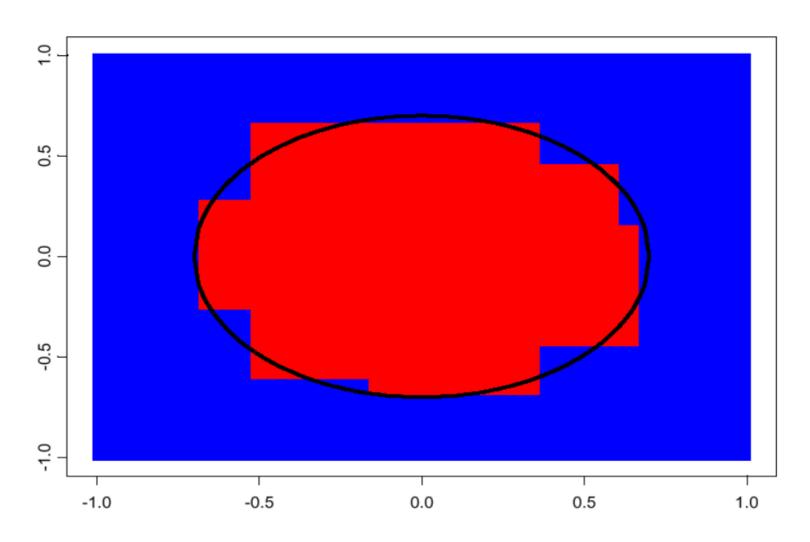
Bagging

- Can be applied to multiple classification models
- Very successful for decision trees
 - Decision trees have high variance
 - Don't prune the individual trees, but grow trees to full extent
 - Precision accuracy of decision trees improved substantially
- OOB average error used instead of Cross Validation

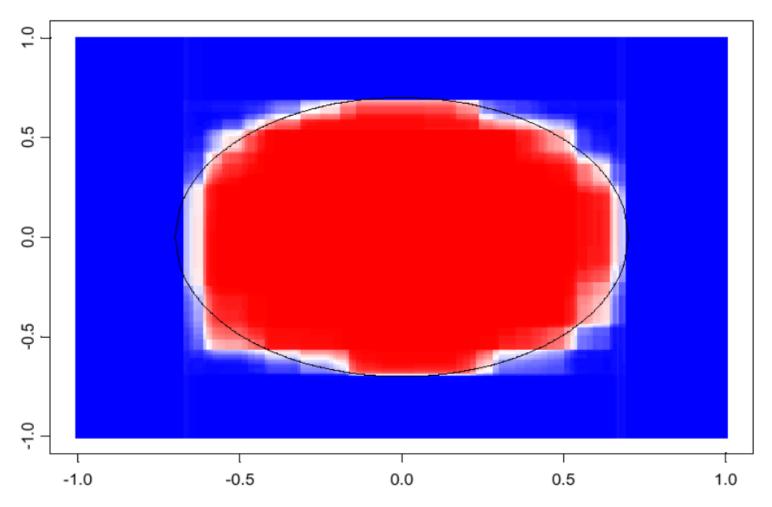
Example Distribution



Decision Tree Decision Boundary



100 Bagged Trees



shades of blue/red indicate strength of vote for particular classification

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "Bagging" and "Random input vectors"
- Bagging method: each tree is grown using a bootstrap VARY TRAINING sample of training data
- Random vector method: At each node, best split is chosen from a random sample of *m* attributes instead of all - TEATURES M- HYPER- PARAMETER
 AT EAGH SPLIT: - SUBSET OF IN FEATURES
 FOR EYERY TREE attributes

Random Forests

TRAIN

- Construct decision trees on bootstrap replicas
 - Restrict the node decisions to a small subset of features picked randomly for each node
- Do not prune the trees
 - Estimate tree performance

on out-of-bootstrap data

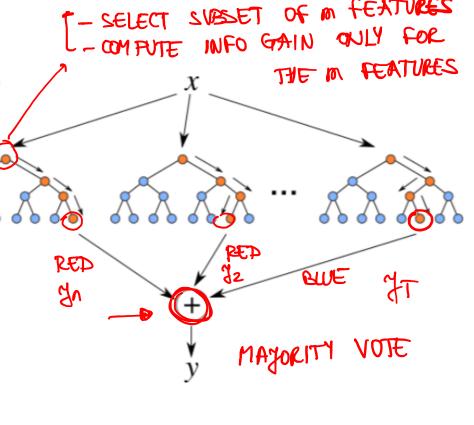
TESTING

Average the output

of all trees (or

choose mode decision)

NOT THE SAME WITH
SELECTING M FEATURES
AND TRAINING ON THOSE



Random Forest Algorithm

TRAIN: 1. For b=1 to B: ONE STEPATION PER MODEL DECISION

- (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
- (b) Grow a random forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.

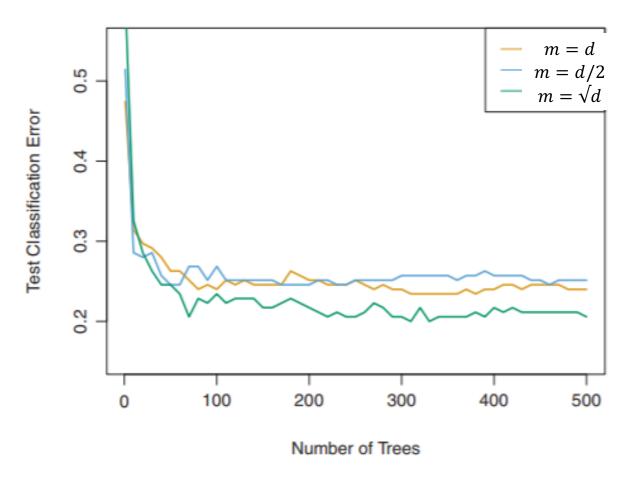
- DECISION TREE i. Select wariables at random from the variables.
- TRAINING ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
 - TREES 2. Output the ensemble of trees $\{T_b\}_1^B \rightarrow SET$ of DECISION

TESTIME: To make a prediction at a new point \underline{x} :

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority \ vote \ \{\hat{C}_b(x)\}_1^B$.

Effect of Number of Predictors



- d = total number of predictors; m = predictors chosen in each split
- Random Forests uses $m = \sqrt{d}$

Variable Importance

- Ensemble of trees looses somewhat interpretability of decision trees
- Which variables contribute mostly to prediction?
- Random Forests computes a Variable Importance metric per feature
 - For each tree in the ensemble, consider the split by the particular feature
 - How much information gain / Gini index decreases
 after the split
 - Average over all trees

Variable Importance Plots

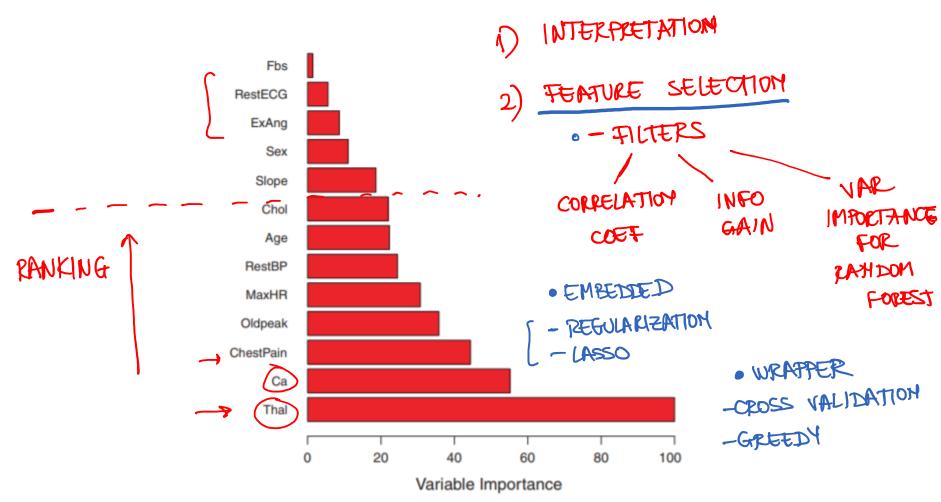


FIGURE 8.9. A variable importance plot for the Heart data. Variable importance is computed using the mean decrease in Gini index, and expressed relative to the maximum.

PROJECT PROPASAL (1) PAGE) NONDAY NO1.2 -title - 7B DESCRIPTION CLASSIFICATION - DATASET - LINK; DESCRIPTION; FEATURES; CHARACTERIZATION NUMERICAL CATEGORICAL - METHOTOLOGY - FEATURE SELECTION
- MODELS - LINEAR
- MODELS - GENERATIVE
ENSEMBLE (BAGGING) BLOSTING) - LANG. FACKAGES - METRICS - PEPERENCES (PELATED WORK)