DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

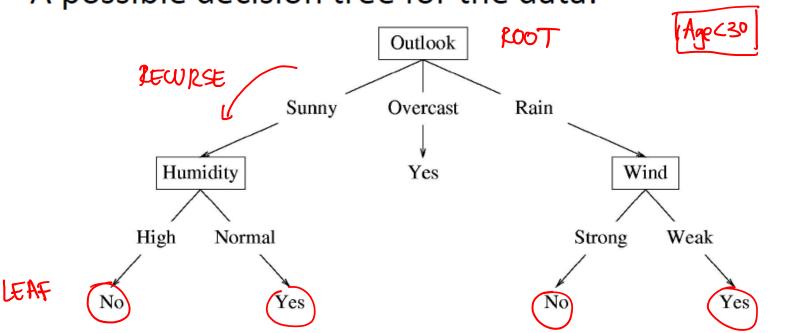
- HW 3 is due on Thu, Oct. 29
- Project proposal
 - Due on Monday, Nov. 2
 - Team of 2
 - Resources and example projects on Piazza
 - . EXAM- HOY. 19

Outline

- Decision trees
 - Information gain
 - Learning decision trees
- Ensemble learning
 - Combine multiple classifiers to reduce model variance and improve accuracy
- Bagging
 - Bootstrap samples
 - Random Forests

Decision Tree

A possible decision tree for the data:



- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $p(Y \mid x \in \text{leaf})$)

MUMERICAL

Information Gain

HOHKAKS

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew χ ?

$$IG(Y|X) = H(Y) - H(Y|X)$$

EMTROPY COND. EMTROPY

Example:
$$(1/x) = 1$$
 $(1/x) = 0$ $(1/x) = 1$ $(1/x) = 1$

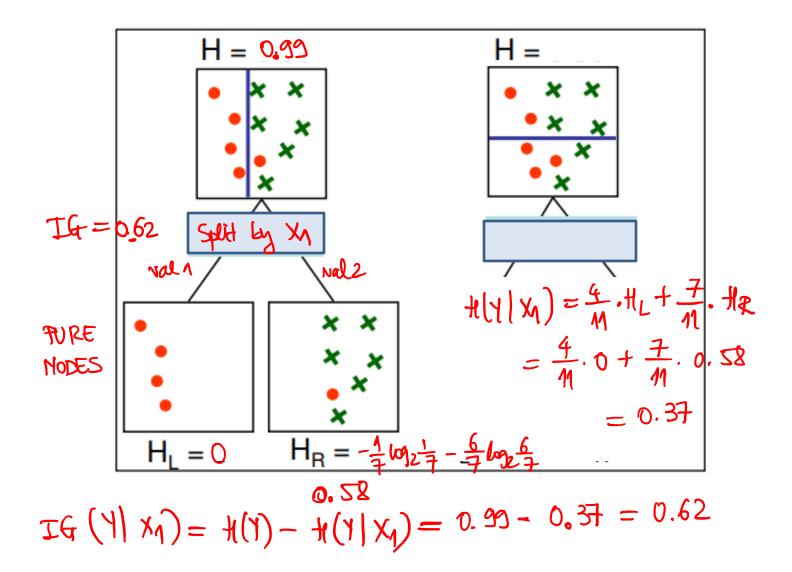
•
$$H(Y|X) = 0.5$$

• Thus IG(Y|X) = 1 - 0.5 = 0.5

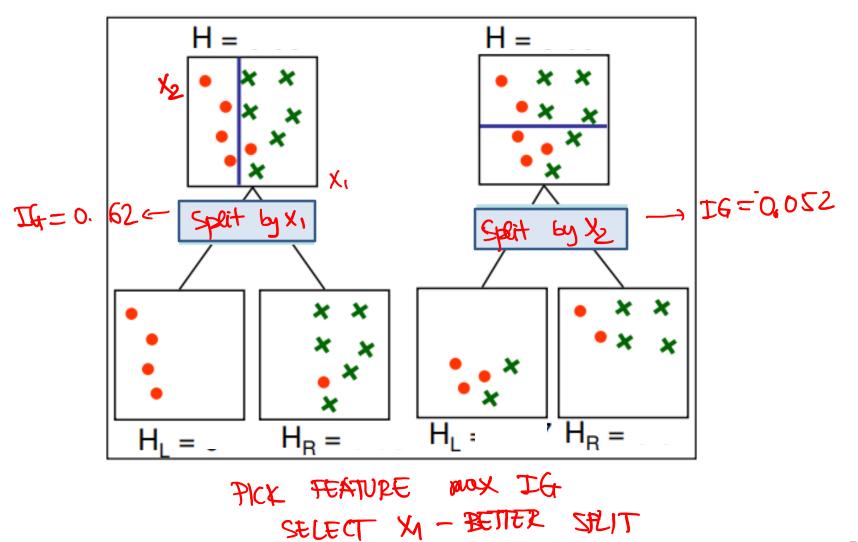
$$H(Y|X) = \sum_{x \in X} P(x=x) \cdot H(Y|X=x)$$

Y: (SIM) Green Example Information Gain

$$H(Y) = -\frac{5}{11} \log_2 \frac{5}{11} - \frac{6}{11} \log_2 \frac{6}{11}$$



Example Information Gain



Learning Decision Trees

```
ROOT: ALL FEATURES ARE AVAILABLE
```

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

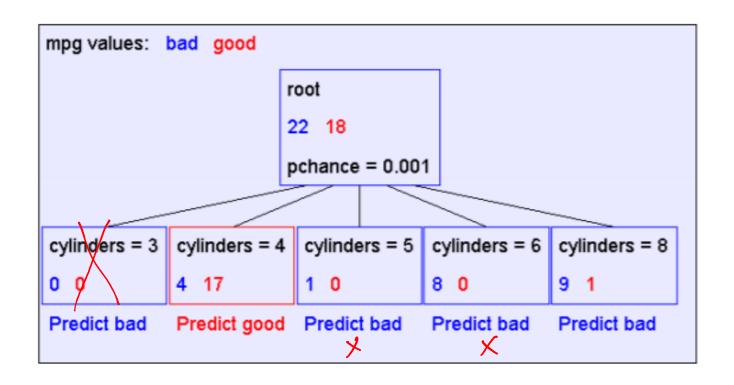
$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

· Recurse : SUBSET OF FEATURES

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

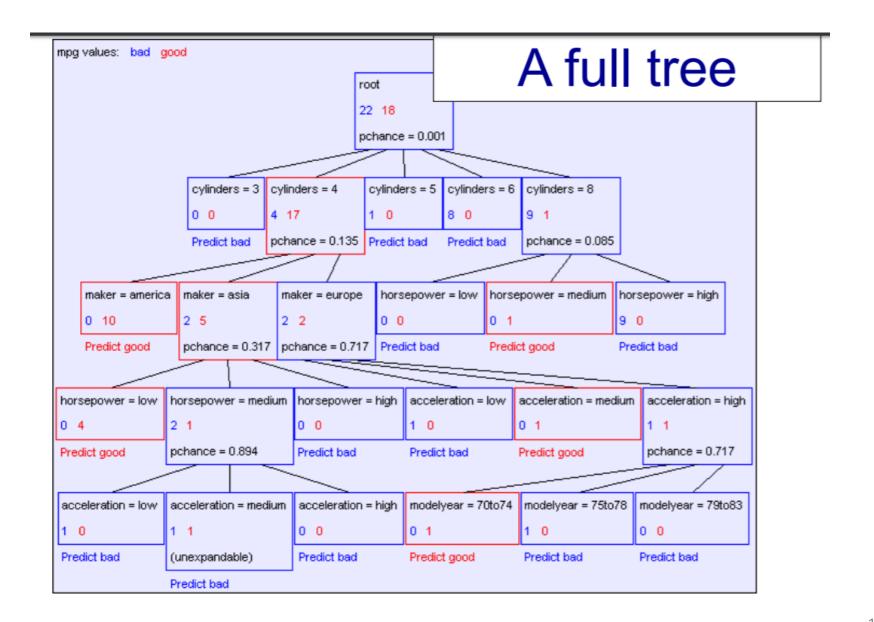
OVERFITTING

When to stop?

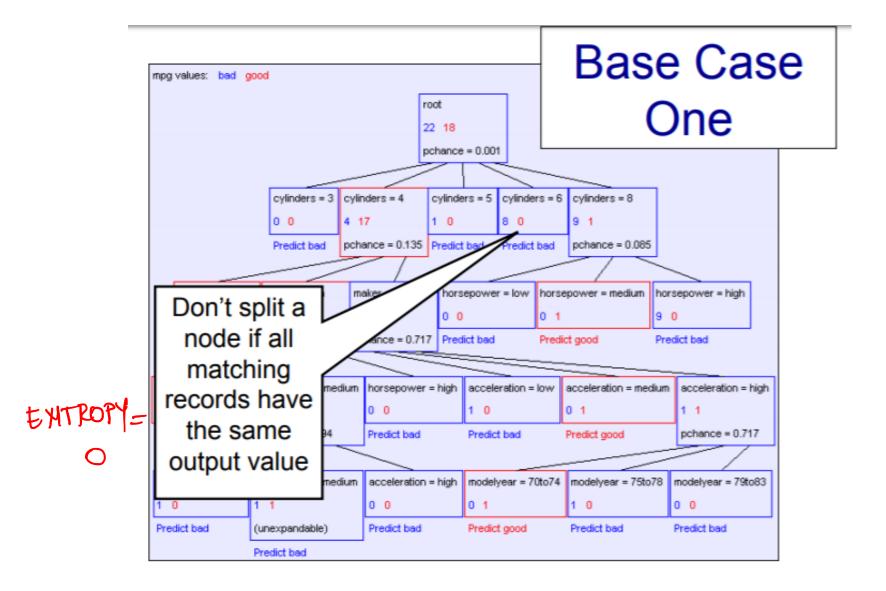


First split looks good! But, when do we stop?

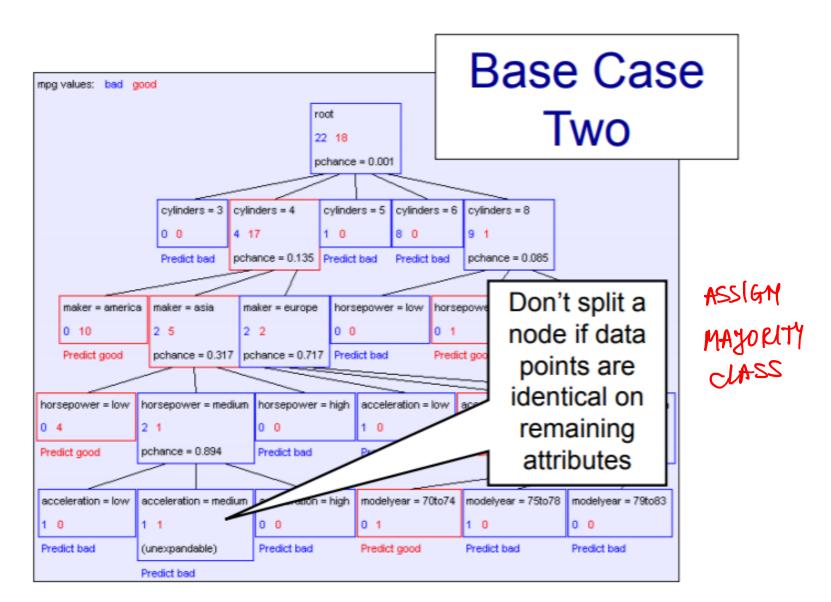
Full Tree



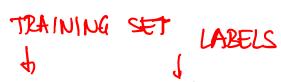
Case 1



Case 2



Decision Trees



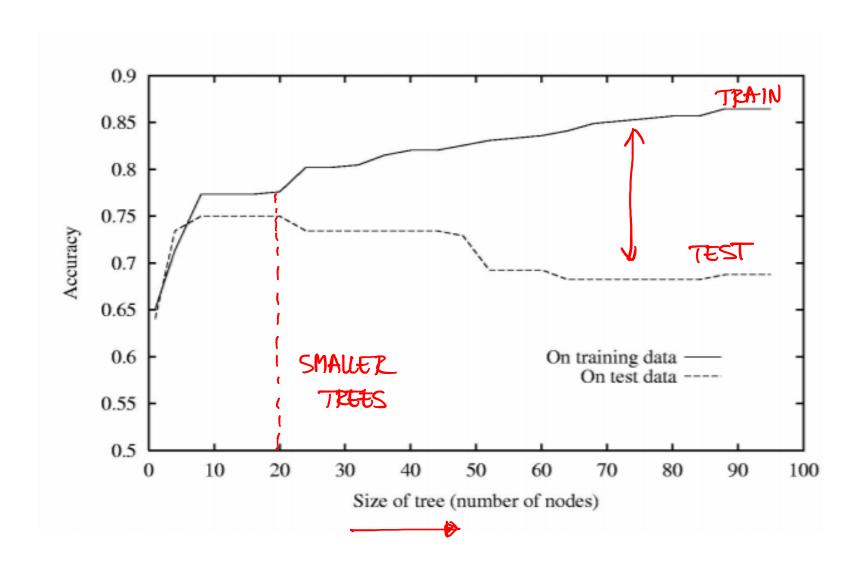
BuildTree(DataSet,Output)

- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create a non-leaf node with n_x children.
 - The i'th child should be built by calling

BuildTree(DS,,Output)

Where DS_i contains the records in DataSet where X = ith value of X.

Overfitting

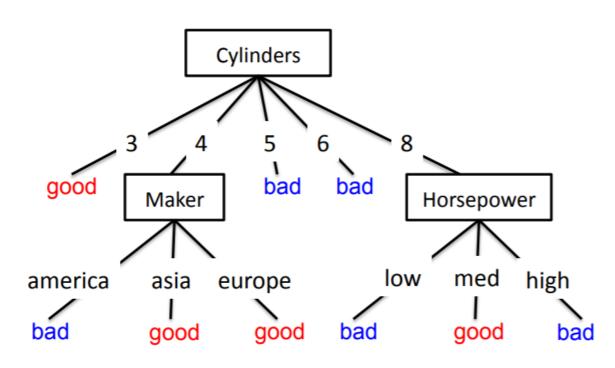


Solutions against Overfitting

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - _ Minimum number of samples per leaf
- Pruning
 - Remove branches of the tree that increase error using cross-validation

Interpretability

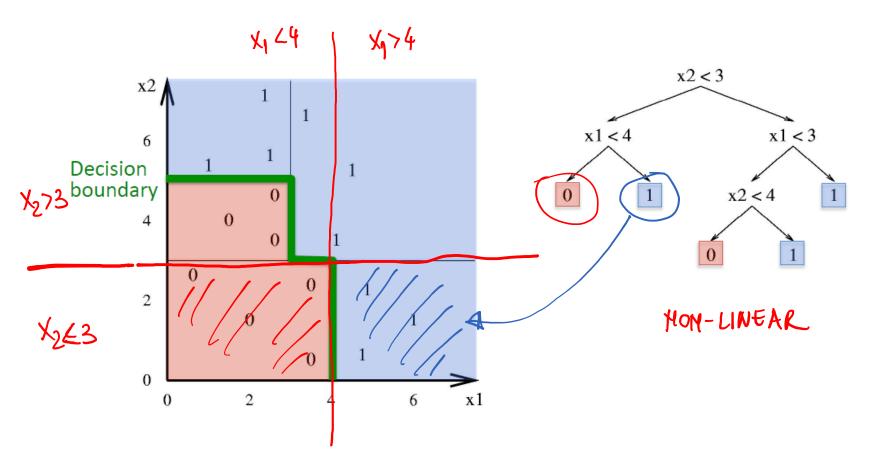
- Each internal node tests an attribute x_i
- One branch for each possible attribute value x_i=v
- Each leaf assigns a class y
- To classify input x: traverse the tree from root to leaf, output the labeled y



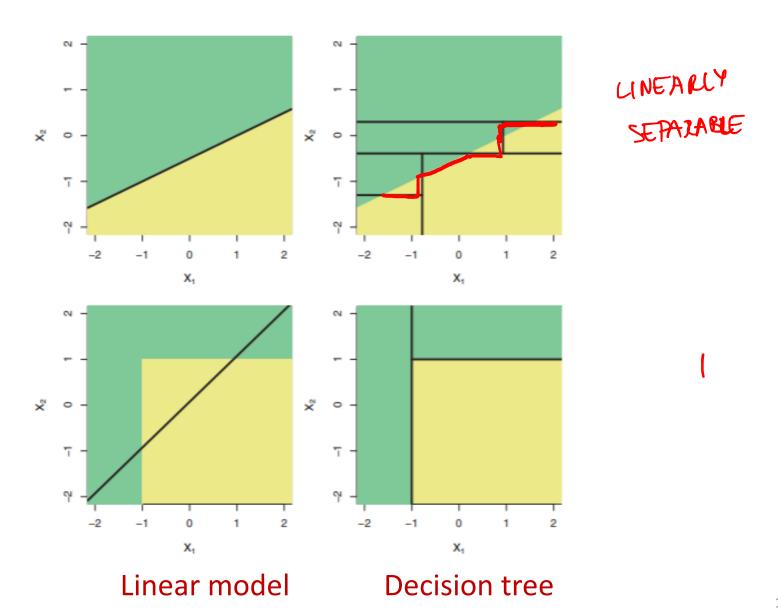
Human interpretable!

Decision Boundary

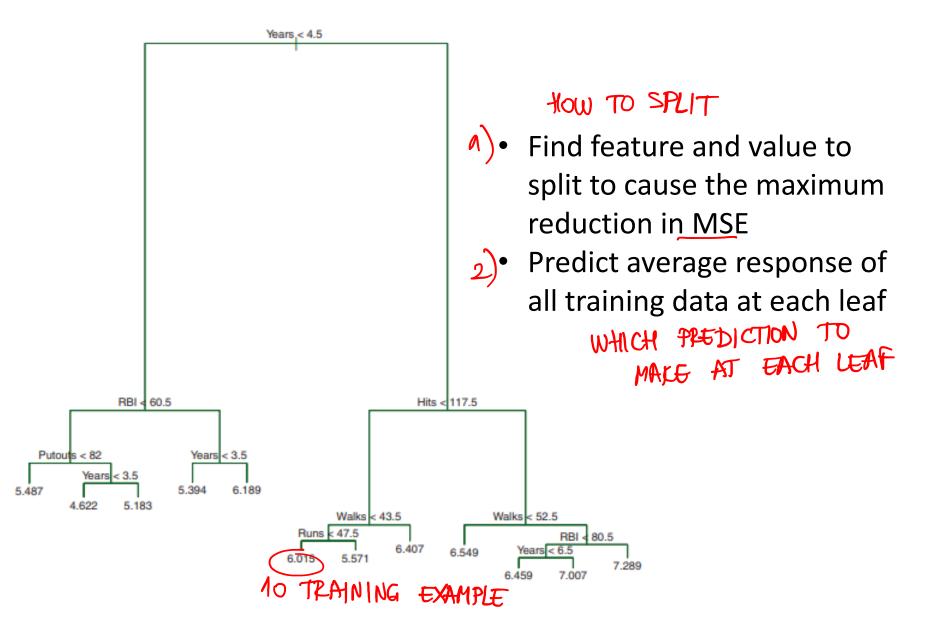
- Decision trees divide the feature space into axisparallel (hyper-)rectangles
- Each rectangular region is labeled with one label



Decision Trees vs Linear Models



Regression Trees



Summary Decision Trees

Representation: decision trees

Bias: prefer small decision trees

Search algorithm: greedy

· Heuristic function: information gain or information

content or others

Overfitting / pruning

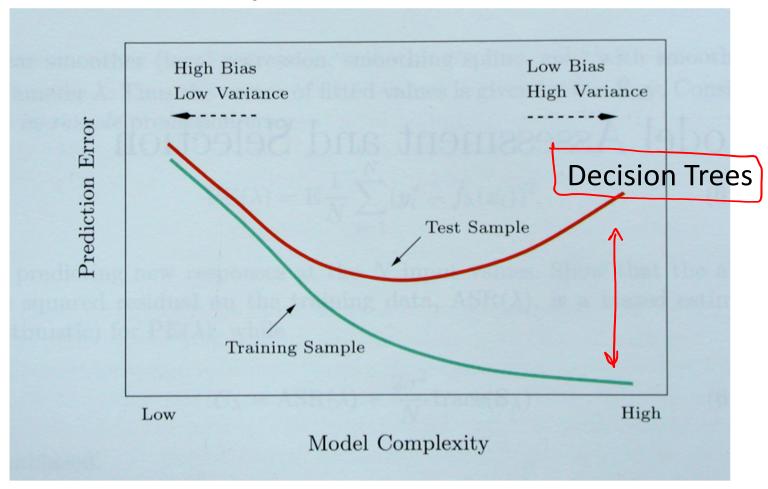
Strengths

- Fast to evaluate
- Interpretable
- Generate rules
- Supports categorical and numerical data

Weaknesses

- Overfitting
- Splitting method might not be optimal
- Accuracy is not always high
- Batch learning

Bias/Variance Tradeoff



Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

How to reduce variance of single decision tree?

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

Build Ensemble Classifiers

- Basic idea
 - Build different "experts", and let them vote
- Advantages
 - Improve predictive performance
 - Easy to implement
 - No too much parameter tuning
- Disadvantages
 - The combined classifier is not transparent and interpretable
 - Not a compact representation

Practical Applications

Goal: predict how a user will rate a movie

- Based on the user's ratings for other movies
- and other peoples' ratings
- with no other information about the movies

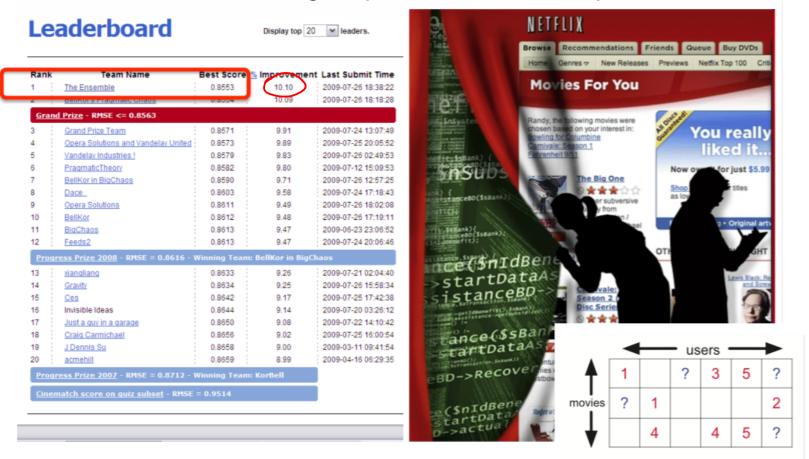
This application is called "collaborative filtering"

Netflix Prize: \$1M to the first team to do 10% better then Netflix' system (2007-2009)

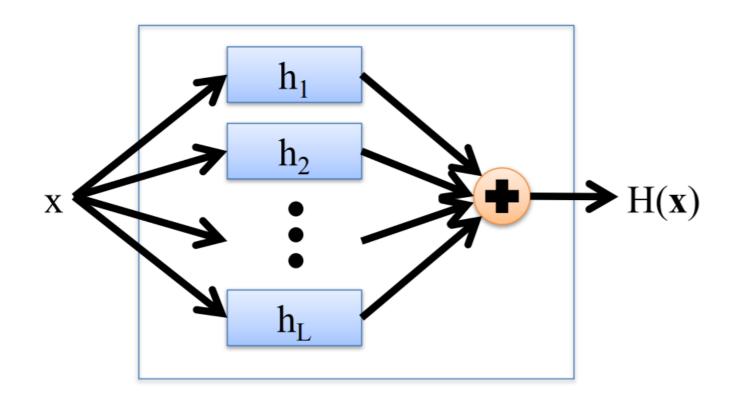
Winner: BellKor's Pragmatic Chaos – an ensemble of more than 800 rating systems

Netflix Prize

Machine learning competition with a \$1 million prize

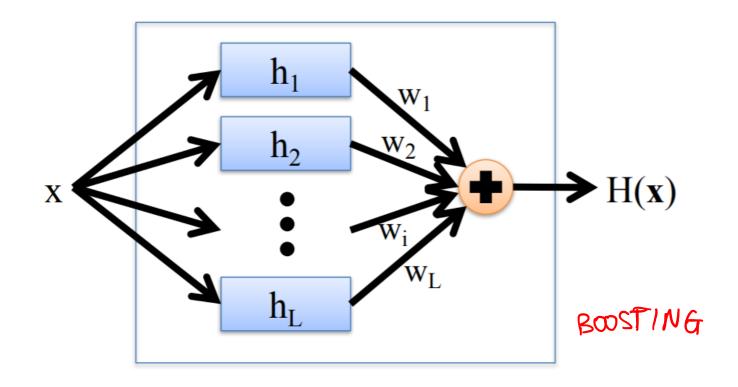


Combining Classifiers: Averaging



Final hypothesis is a simple vote of the members

Combining Classifiers: Weighted Averaging



 Coefficients of individual members are trained using a validation set

Reduce error

Suppose there are 25 base classifiers

- MAY. VOTE
- Each classifier has error rate, ≈ 0.35
- Assume independence among classifiers
- Probability that the ensemble classifier makes a wrong prediction: ϵ^{12}

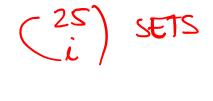
wrong prediction:

7/3 Models Make AN Error

P(Ensemble Makes) =
$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i}$$
 (1- ε)

Error

 $i = 13$



Reduce Variance

```
ENSEMBLES:
  S-REDUCE ERROR
- REDUCE VAR.
    ASSUMPTION: MODELS ARE INDEPENDENT
    REALITY: ONE TRAINING SET
    How to ACHEIVE DIVERSITY?
```

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!