DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Outline

- Naïve Bayes classifier
 - Laplace smoothing
 - Feature selection
 - Wrappers, filters, embedded methods
 - Decision trees
 - Information gain

Generative vs Discriminative

- Generative model
 - Given X and Y, learns the joint probability P(X,Y)
 - Can generate more examples from distribution
 - Examples: LDA, Naïve Bayes, language models (GPT-2)

P[X,Y] = P[X=x|Y=1]P[Y=1]
PHOR

- Discriminative model
 - Given X and Y, learns a decision function for classification
 - Examples: logistic regression, kNN

Learning Joint Distributions

Step 1:

Build a JD table for your attributes in which the probabilities are unspecified

A	В	С	Prob
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Step 2:

Then, fill in each row with:

$$\hat{P}(\text{row}) = \frac{\text{records matching row}}{\text{total number of records}}$$

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Fraction of all records in which A and B are true but C is false

d features, binary = Table 2

Naïve Bayes Classifier

Idea: Use the training data to estimate

$$P(X \mid Y)$$
 and $P(Y)$.

Then, use Bayes rule to infer $P(Y|X_{\mathrm{new}})$ for new data

Pice Easy to estimate from data Impractical, but necessary
$$P[Y=k|X=x] = \frac{P[Y=k]P[X_1=x_1 \land \cdots \land X_d=x_d|Y=k]}{P[X_1=x_1 \land \cdots \land X_d=x_d]}$$
Unnecessary, as it turns out CONSTANT

• Recall that estimating the joint probability distribution $P(X_1, X_2, \dots, X_d \mid Y)$ is not practical

Naïve Bayes Classifier

Problem: estimating the joint density isn't practical

- Severely overfits, as we saw before

However, if we make the assumption that the attributes are independent given the class label, estimation is easy!

P(X=£1)...
$$(1 + 1) = (1$$

Estimate $P[X_j = x_j | Y = k]$ and P[Y = k] directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

$$P(play) = ?$$
 $P(\neg play) = ?$ $P(Sky = sunny | play) = ?$ $P(Sky = sunny | \neg play) = ?$ $P(Humid = high | play) = ?$ $P(Humid = high | \neg play) = ?$

Estimate $P[X_j = x_j | Y = k]$ and P[Y = k] directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	Play?
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

$$P(\text{play}) = ?$$
 3 4 $P(\neg \text{play}) = ?$ 1 4 $P(\text{Sky} = \text{sunny} \mid \text{play}) = ?$ $P(\text{Sky} = \text{sunny} \mid \neg \text{play}) = ?$ $P(\text{Humid} = \text{high} \mid \text{play}) = ?$ $P(\text{Humid} = \text{high} \mid \neg \text{play}) = ?$...

Estimate $P[X_j = x_j | Y = k]$ and P[Y = k] directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	<u>Play?</u>
sunny						yes
sunny						yes
rainy	cold	high	strong	warm	change	no
sunny						yes

$$P(\text{play}) = 3/4$$
 $P(\neg \text{play}) = 1/4$ $P(\text{Sky} = \text{sunny} \mid \text{play}) = ?$ $P(\text{Sky} = \text{sunny} \mid \neg \text{play}) = ?$ $P(\text{Humid} = \text{high} \mid \text{play}) = ?$ $P(\text{Humid} = \text{high} \mid \neg \text{play}) = ?$...

Estimate $P[X_j = x_j | Y = k]$ and P[Y = k] directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy						no
sunny	warm	high	strong	cool	change	yes

$$P(play) = 3/4$$
 $P(\neg play) = 1/4$ $P(Sky = sunny | play) = 1$ $P(Sky = sunny | \neg play) = ?$ $P(Humid = high | play) = ?$ $P(Humid = high | \neg play) = ?$

Estimate $P[X_j = x_j | Y = k]$ and P[Y = k] directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	Play?
		normal				yes
		high				yes
rainy	cold	high	strong	warm	change	no
		high				yes

P(play) =
$$3/4$$
 P(¬play) = $1/4$ P(Sky = sunny | play) = 1 P(Sky = sunny | ¬play) = 0 P(Humid = high | play) = $2/3$ P(Humid = high | ¬play) = $2/3$ P(Humid = high | ¬play) = $2/3$ P(Humid = high | ¬play) = $2/3$

Estimate $P[X_j = x_j | Y = k]$ and P[Y = k] directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
		high				no
sunny	warm	high	strong	cool	change	yes

P(play) =
$$3/4$$
 P(¬play) = $1/4$ P(Sky = sunny | play) = 1 P(Sky = sunny | ¬play) = 0 P(Humid = high | play) = $2/3$ P(Humid = high | ¬play) = $?$

Laplace Smoothing

- Notice that some probabilities estimated by counting might be zero
 - Possible overfitting!

EXAMPLE:

Laplace Smoothing

- Notice that some probabilities estimated by counting might be zero
 - Possible overfitting!
- Fix by using Laplace smoothing:
 - Adds 1 to each count

$$P(X_j = v \mid Y = k) = \frac{\sum_{v' \in \text{values}(X_j)} (c_v) + 1}{\sum_{v' \in \text{values}(X_j)} (c_v) + |\text{values}(X_j)|}$$

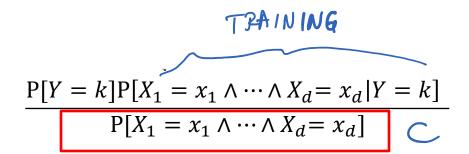
where

- c_v is the count of training instances with a value of v for attribute j and class label k
- $|values(X_j)|$ is the number of values X_j can take on

Using the Naïve Bayes Classifier

Now, we have

$$P[Y = k | X = x] =$$



This is constant for a given instance, and so irrelevant to our prediction

Naïve Bayes Classifier

TRAIN:

- For each class label k
 - 1. Estimate prior $\pi_k = P[Y = k]$ from the data
 - 2. For each value v of attribute X_i
 - Estimate $P[X_j = v | Y = k]$

TEST

Classify a new point via:

$$h(\mathbf{x}) = \underset{y_k}{\operatorname{arg\,max}} \log P(Y = k) + \sum_{j=1}^{a} \log P(X_j = x_j \mid Y = k)$$

 In practice, the independence assumption doesn't often hold true, but Naïve Bayes performs very well despite it

Comparison to LDA

Similarity to LDA

- Both are generative models
- They both estimate:

$$P[X = x \text{ and } Y = k] = P[X = x | Y = k]P[Y = k]$$

Difference from LDA

- LDA assumes feature densities are normal
- LDA assumes same variances for all classes
- Naïve Bayes makes the conditional independence assumption

Text Classification: Examples

- Classify news stories as World, US, Business, SciTech, Sports, etc.
- Add terms to Medline abstracts (e.g. "Conscious Sedation" [E03.250])
- Classify business names by industry
- Classify student essays as A/B/C/D/F
- Classify email as Spam/Other
- Classify email to tech staff as Mac/Windows/...
- Classify pdf files as ResearchPaper/Other
- Determine authorship of documents
- Classify movie reviews as Favorable/Unfavorable/Neutral
- Classify technical papers as Interesting/Uninteresting
- Classify jokes as Funny/NotFunny
- Classify websites of companies by Standard Industrial Classification (SIC) code

Bag of Words Representation

Represent document d as a vector of word counts \mathbf{x}

- x_i represents the count of word j in the document
 - x is sparse (few non-zero entries)

- Naïve Bayes learns the distribution of each word per class
- Naïve Bayes becomes a linear classifier under multi-nomial distribution

Naïve Bayes Summary

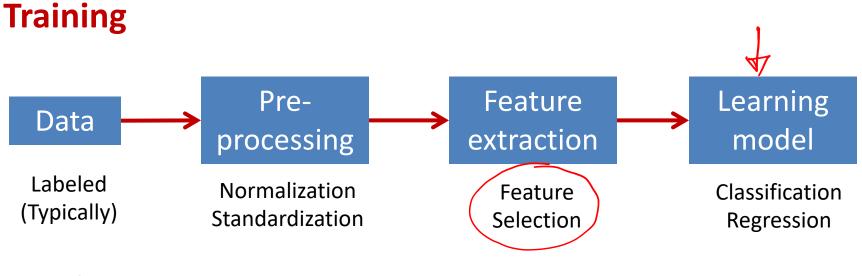
Advantages:

- Fast to train (single scan through data)
- Fast to classify
- Not sensitive to irrelevant features
- Handles real and discrete data
- Handles streaming data well

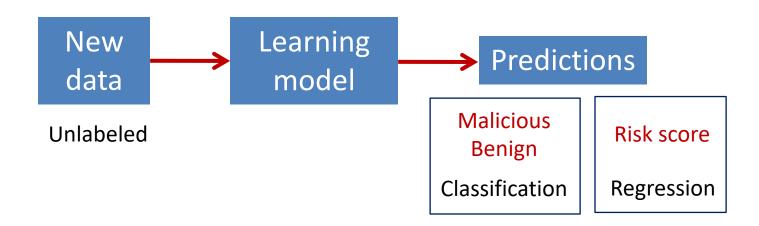
Disadvantages:

Assumes independence of features

Supervised Learning Process



Testing



Feature selection

Feature Selection

 Process for choosing an optimal subset of features according to a certain criteria

Why we need Feature Selection:

- 1. To improve performance (in terms of speed, predictive power, simplicity of the model).
- 2. To visualize the data for model selection.
- 3. To reduce dimensionality and remove noise.

Methods for Feature Selection

Wrappers

FORWARD SECTION

- Select subset of features that gives best prediction accuracy (using cross-validation)
- Model-specific
- Filters INDEPENDENT DECISION ON EACH FEATURE
 - Compute some statistical metrics (correlation coefficient, information gain)
 - Select features with statistics higher than threshold

Embedded methods

- Feature selection done as part of training
- Example: Regularization (Lasso, L1 regularization)

Filters

Principle: replace evaluation of model with quick to compute statistics $J(X_f)$

	k	$J(X_k)$
	35	0.846
	42	0.811
	10	0.810
	654	0.611
	22	0.443
	59	0.388
	212	0.09
	39	0.05
١		

For each feature X_f

• Compute $J(X_f)$

End

Rank features according to $J(X_f)$ Choose manual cut-off point

Examples of filtering criterion

- The Information Gain with the target variable $J(X_f) = I(X_f; Y)$
- The correlation with the target variable
- Feature importance

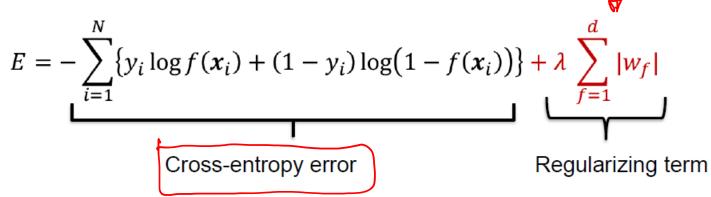
Embedded methods: Regularization

Principle: the classifier performs feature selection as part of the learning procedure

Example: the logistic LASSO (Tibshirani, 1996)

$$f(x) = \frac{1}{1 + e^{-(\mathbf{w}^T x)}} = P(Y = 1 | x)$$

With Error Function:



Pros:

Performs feature selection as part of learning the procedure

Outline

- Naïve Bayes classifier
 - Laplace smoothing
- Feature selection BOOK CHAPTER

- Wrappers, filters, embedded methods
- Decision trees
 - Information gain

Sample Dataset

- Columns denote features X_i
- Rows denote labeled instances $\langle x_i, y_i \rangle$
- Class label denotes whether a tennis game was played

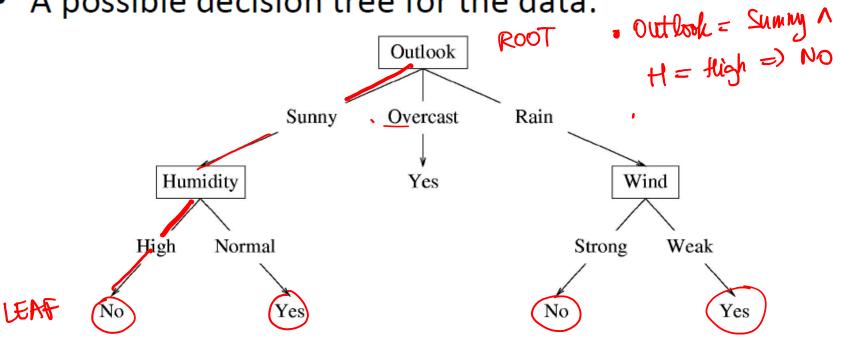
	Predictors					
Outlook	Temperature	Humidity	Wind	Class		
Sunny	Hot	High	Weak	No		
Sunny	Hot	High	Strong	No		
Overcast	Hot	High	Weak	Yes		
Rain	Mild	High	Weak	Yes		
Rain	Cool	Normal	Weak	Yes		
Rain	Cool	Normal	Strong	No		
Overcast	Cool	Normal	Strong	Yes		
Sunny	Mild	High	Weak	No		
Sunny	Cool	Normal	Weak	Yes		
Rain	Mild	Normal	Weak	Yes		
Sunny	Mild	Normal	Strong	Yes		
Overcast	Mild	High	Strong	Yes		
Overcast	Hot	Normal	Weak	Yes		
Rain	Mild	High	Strong	No		

 $< x_i, y_i >$

Categorical data

Decision Tree

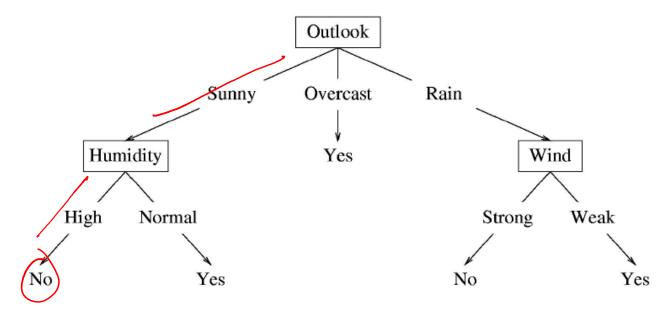
A possible decision tree for the data:



- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $p(Y \mid x \in \text{leaf})$)

Decision Tree

A possible decision tree for the data:

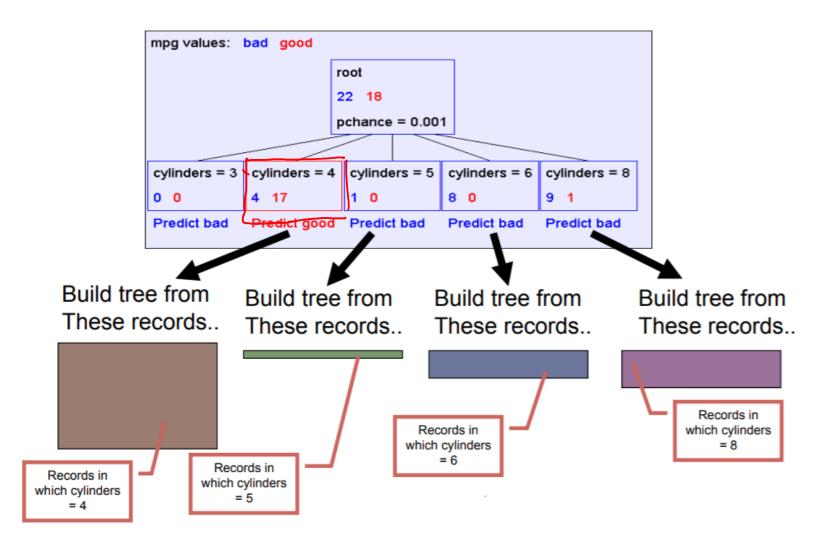


 What prediction would we make for <outlook=sunny, temperature=hot, humidity=high, wind=weak>?

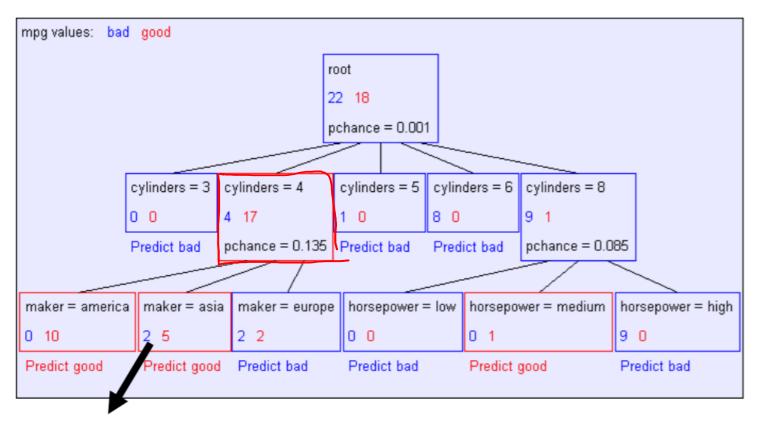
Learning Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature) → DIFF ALGORITHUS
 - Recurse

Key Idea: Use Recursion Greedily



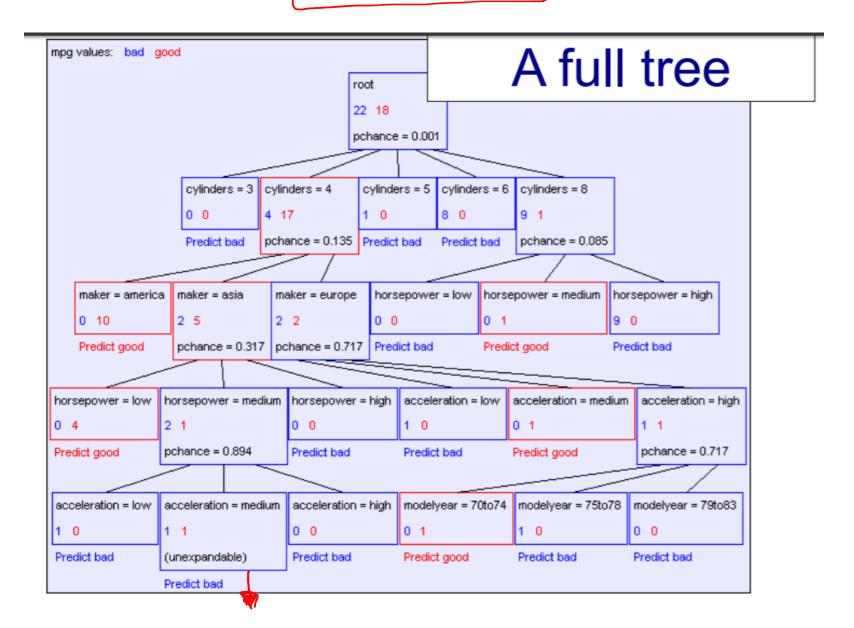
Second Level



Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

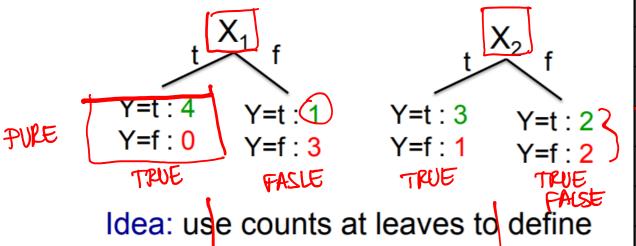
(Similar recursion in the other cases)

Full Tree



Splitting

Would we prefer to split on X_1 or X_2 ?



probability distributions, so we can

X_1	X_2	Υ	
Т	Τ.	Т	
Т	F	Т	
Т	Τ,	Т	
T	F	Τ	
F	T.	Т	7
F	F	H	7
F	T •	H	
F	F	F	/

LARTE

ERROL 1

measure uncertainty!

Use entropy-based measure (Information Gain)

ERROR: 3

Entropy

Suppose X can have one of m values...

$$. \overbrace{V_{1}, V_{2}, \dots V_{m}}$$

$$P(X=V_1) = p_1 \qquad P(X=V_2) = p_2$$

$$P(X=V_2) = p_2$$

$$P(X=V_m) = p_m$$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$

$$= -\sum_{j=1}^m p_j \log_2 p_j$$

H(X) = The entropy of X

- "High Entropy" means X is from a uniform (boring) distribution
- "Low Entropy" means X is from varied (peaks and valleys) distribution

Entropy Examples

$$H(x) = -\sum_{j=1}^{N} \beta_j \log_2 \beta_j$$

$$\pm (x) = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = -\log_2 \frac{1}{2$$

$$\chi n \begin{pmatrix} 1 & 2 & \cdots & n \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}$$

$$-3 \left(\frac{3}{3}\right) \stackrel{?}{\cancel{2}} \stackrel{?}{\cancel{3}} \stackrel{?}{\cancel{3}}$$

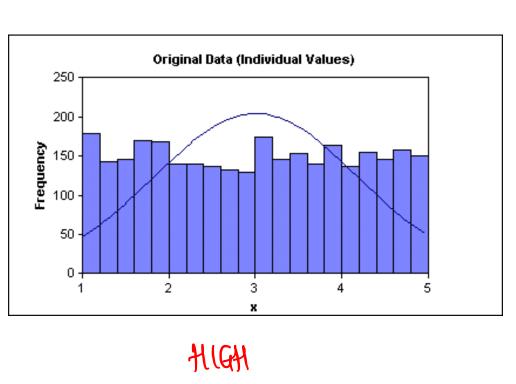
$$H(x) = -\sum_{n}^{\infty} \log_{2} \frac{1}{n}$$

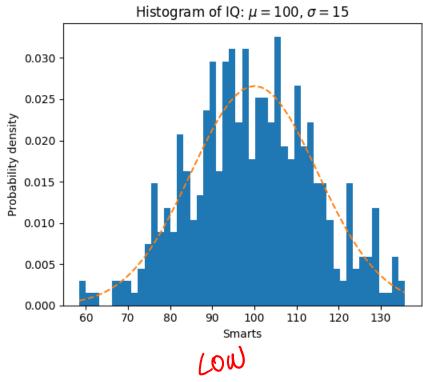
$$= -\log_{2} \frac{1}{n} = -\log_{2} n$$

$$H(2) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.52$$

High/Low Entropy

Which distribution has high entropy?





Suppose I'm trying to predict output Y and I have input X

X = College Major

Y = Likes "Gladiator"

	X	Υ
	Math	Yes
	History	No
	CS	Yes
{	Math	No
(Math	No
	CS	Yes
	History	No
	Math	Yes

Let's assume this reflects the true probabilities

E.G. From this data we estimate

•
$$P(LikeG = Yes) = 12$$

•
$$P(LikeG = Yes) = 1|2$$

• $P(Major = Math \& LikeG = No) = 1|4$
• $P(Major = Math) = 1|2$
• $P(LikeG = Yes \mid Major = History) = 0$

Note:

$$\bullet H(Y) = 1$$

ote:
•
$$H(X) = 1.5$$

• $H(Y) = 1$
• $H(Y) = 1$
 $H(X) = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{2}{4} \log_2 \frac{1}{4}$
 $= \frac{1}{2} + 1 = \frac{3}{2}$

X = College Major

Y = Likes "Gladiator"

	Х	Υ
•	Math	Yes
	History	No
	CS	Yes
•	Math	No
*	Math	No
	CS	Yes
	History	No
•	Math	Yes

Definition of Specific Conditional Entropy:

H(Y|X=v) = The entropy of Y among only those records in which X has value V

Example:

- H(Y|X=Math) = 4
- *H*(*Y*/*X*=*History*) = ○
- *H*(*Y*/*X*=*CS*) = ○

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

 $\overline{H(Y|X)}$ = The average specific conditional entropy of Y

- = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row's value of X
- = Expected number of bits to transmit Y if both sides will know the value of X

$$= \sum_{j} Prob(X=v_{j}) H(Y \mid X=v_{j})$$

X = College Major Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average conditional entropy of Y

$$= \sum_{j} Prob(X=v_{j}) H(Y \mid X=v_{j})$$

Example:

V_j	$Prob(X=v_j)$	$H(Y \mid X = v_j)$
Math	1/2	1
History	1/4	O
CS	1/4	O

Information Gain

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew χ ?

$$IG(Y|X) = H(Y) - H(Y|X)$$

Example:

•
$$H(Y) = \frac{1}{2}$$
• $H(Y|X) = \frac{1}{2}$
• Thus $IG(Y|X) = \frac{1}{2}$

TG(Y|X₁).... IG(Y|X_d)

Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

$$\text{curse}$$

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!