DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

- HW 3 is out
 - Due on Thu, Oct. 29
- Project proposal
 - Due on Monday, Nov. 2
 - Team of 2
 - Resources and example projects on Piazza

Project Proposal

Project Title

1 Page

- Project Team
- Problem Description
 - What is the prediction problem you are trying to solve?
- Dataset
 - Link to data, brief description, number of records, feature dimensionality (at least 10K records)
- Approach and methodology
 - Normalization
 - Feature selection
 - Machine learning models you will try
 - Splitting into training and testing, cross validation
 - Language and packages you plan to use
- Metrics (how you will evaluate your models)
- References
 - How did you find out about the dataset, did anyone else used the data for a similar prediction task

Outline

- Generative vs Discriminative Models
- Linear Discriminant Analysis (LDA)
 - LDA is a linear classifier
 - LDA vs Logistic Regression
 - Lab
- Density Estimation
- Naïve Bayes classifier

Generative vs Discriminative

Generative model

- Given X and Y, learns the joint probability P(X,Y)
- Can generate more examples from distribution
- Examples: LDA, Naïve Bayes, language models (GPT-2)

Discriminative model

- Given X and Y, learns a decision function for classification
- Examples: logistic regression, kNN

Classify to one of k classes

Logistic regression computes directly

$$-P[Y=1|X=x]$$

Assume sigmoid function

LDA:
$$P[Y=k \mid X=X] = \frac{P[X=X \mid Y=k] \cdot P[Y=k]}{P[X=X]}$$
label dota

$$T_k = P[Y=k] \quad PRIOR PB \quad OF \quad CLASS \ k$$

$$f_k(x) = P[X=x|Y=k] \qquad \qquad feature \quad VECTOR$$

LDA

Assume $f_k(x)$ is Gaussian! Unidimensional case (d=1)

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x - \mu_k)^2\right)$$

$$\frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x - \mu_k)^2\right)$$

Continuous Random Variables

X:U→V is continuous RV if it takes infinite number of values

• The cumulative distribution function CDF $F: R \longrightarrow \{0,1\}$ for X is

defined for every value x by:

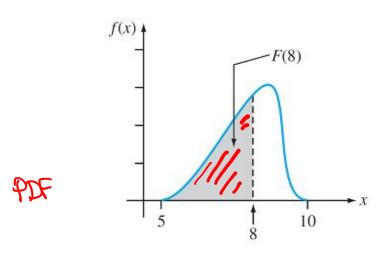
$$F(x) = \Pr(X \le x)$$

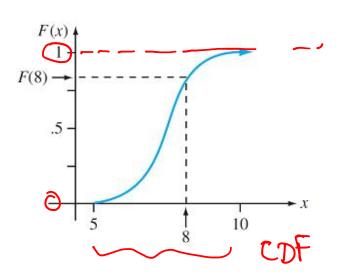
The **probability distribution function PDF** f(x) for X is

$$f(x) = dF(x)/dx$$

 $E[X] = \int x f(x) dx$

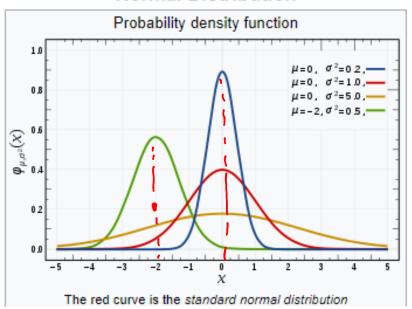
Increasing

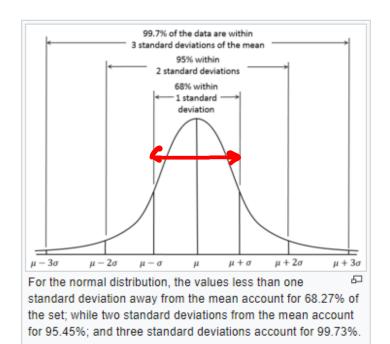




Gaussian Distribution

Normal Distribution





Notation	$\mathcal{N}(\mu, \sigma^2)$					
Parameters	$\mu \in \mathbb{R}$ = mean (location)					
	$\sigma^2>0$ = variance (squared scale)					
Support	$x \in \mathbb{R}$					
PDF	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$					

LDA

Assume $f_k(x)$ is Gaussian! Unidimensional case (d=1)

ASSUME
$$G_1 = G_2 = \dots = G_k = G$$

$$f_{k}(x) = \frac{1}{\sqrt{2\pi}\sigma_{k}} \exp\left(-\frac{1}{2\sigma_{k}^{2}}(x - \mu_{k})^{2}\right)$$

$$= P(Y=k|X=x) = \frac{P(x=x|Y=k)P(Y=k)}{P(x=x)} = \frac{P(x) \cdot Tk}{P(x=x)}$$

$$= \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma_{k}^{2}}(x - \mu_{k})^{2}\right) \cdot Tk$$

$$= \frac{1}{\sqrt{2\sigma}} \exp\left(-\frac{1}{2\sigma_{k}^{2}}(x - \mu_{k})^{2$$

LDA decision boundary

$$\begin{aligned} \phi_{K}(x) &= \frac{T_{K} + f_{K}(x)}{C} &\quad \text{Pick } \text{k to } \max p_{K}(x) \\ \log p_{K}(x) &= \log T_{K} + \log f_{K}(x) - \log C \\ &= \log T_{K} + \log \frac{1}{12110} - \frac{1}{2G^{2}} (x - \mu_{K})^{2} - \log C \\ &= \log T_{K} + \log \frac{1}{12110} - \frac{1}{2G^{2}} (x - \mu_{K})^{2} - \log C \\ &= \log T_{K} + \log \frac{1}{12110} - \frac{1}{2G^{2}} (x - \mu_{K})^{2} - \log C \\ &= \log T_{K} + \log \frac{1}{12110} - \frac{1}{2G^{2}} (x - \mu_{K})^{2} - \log C \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - 2G^{2} \times \mu_{K} - \frac{\mu_{K}^{2}}{2G^{2}} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - 2G^{2} \times \mu_{K} - 2G^{2} \times \mu_{K} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} - 2G^{2} \times \mu_{K} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} + 2G^{2} \times \mu_{K} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} + 2G^{2} \times \mu_{K} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} + 2G^{2} \times \mu_{K} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} + 2G^{2} \times \mu_{K} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} + 2G^{2} \times \mu_{K} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} + 2G^{2} \times \mu_{K} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} + 2G^{2} \times \mu_{K} \\ &= \log T_{K} + 2G^{2} \times \mu_{K} + 2G^{2} \times \mu_{K$$

LDA decision boundary

Pick class k to maximize

$$\begin{split} \delta_k(x) &= x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k) \\ \text{Example: } k = 2, \pi_1 = \pi_2 & \text{EQUAL PRIORS} \\ \delta_\Lambda(x) &= x \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} + \log(\pi_\Lambda) \\ \delta_2(x) &= x \cdot \frac{\mu_2}{\sigma^2} - \frac{\mu_2}{2\sigma^2} + \log(\pi_2) \\ \text{CLASSIFY CLASS } \Lambda & \text{IF} & \delta_\Lambda(x) ? & \delta_2(x) \\ x \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} ? & x \cdot \frac{\mu_2}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} & \Rightarrow x \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} \\ \chi \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} ? & \chi \cdot \frac{\mu_2}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} & \Rightarrow x \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda}{\sigma^2} \\ \chi \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} ? & \chi \cdot \frac{\mu_2}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} & \Rightarrow x \cdot \frac{\mu_\Lambda}{\sigma^2} + \frac{\mu_\Lambda}{\sigma^2} \\ \chi \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} ? & \chi \cdot \frac{\mu_2}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} & \Rightarrow x \cdot \frac{\mu_\Lambda}{\sigma^2} + \frac{\mu_\Lambda}{\sigma^2} \\ \chi \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} ? & \chi \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda}{\sigma^2} & \Rightarrow x \cdot \frac{\mu_\Lambda}{\sigma^2} + \frac{\mu_\Lambda}{\sigma^2} \\ \chi \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda^2}{2\sigma^2} ? & \chi \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda}{\sigma^2} & \Rightarrow x \cdot \frac{\mu_\Lambda}{\sigma^2} + \frac{\mu_\Lambda}{\sigma^2} \\ \chi \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda}{\sigma^2} ? & \chi \cdot \frac{\mu_\Lambda}{\sigma^2} - \frac{\mu_\Lambda}{\sigma^2} & \Rightarrow x \cdot \frac{\mu_\Lambda}{\sigma^2} + \frac{\mu_\Lambda}{\sigma^2} \end{cases}$$

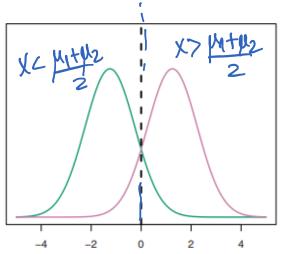
LDA decision boundary

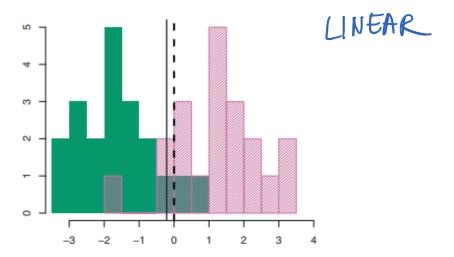
Pick class k to maximize

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Example: $k = 2, \pi_1 = \pi_2$

Classify as class 1 if $x > \frac{\mu_1 + \mu_2}{2\sigma}$





True decision boundary

Estimated decision boundary

LDA in practice

Given training data (x_i, y_i) , $i = 1, ..., n, y_i \in \{1, ..., K\}$

1. Estimate mean and variance

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\hat{\sigma}^2 = \underbrace{\frac{1}{n - K}} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2$$

2. Estimate prior

$$\hat{\pi}_k = n_k/n.$$

Given testing point x, predict k that maximizes:

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

LINEAR

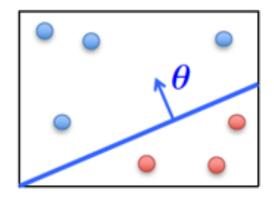
Linear models

Perceptron

$$h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x})$$

Logistic regression

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$



LDA

$$Max_k \ \delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

LDA vs Logistic Regression

- Logistic regression computes directly $\Pr[Y=1|X=x]$ by assuming sigmoid function
 - Uses Maximum Likelihood Estimation
 - Discriminative Model
- LDA uses Bayes Theorem to estimate it
 - Estimates mean, co-variance, and prior from training data
 - Generative model
 - Assumes Gaussian distribution for $f_k(x) = \Pr[X = x | Y = k]$
- Which one is better?
 - LDA can be sensitive to outliers
 - LDA works well for Gaussian distribution
 - Logistic regression is more complex to solve, but more expressive

Linear Classifier Lab

```
data = pd.read_csv('heart.csv')
data = data.dropna()
x_columns = data.columns != 'target'
data = utils.shuffle(data)
data.head()
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
215	43	0	0	132	341	1	0	136	1	3.0	1	0	3	0
145	70	1	1	156	245	0	0	143	0	0.0	2	0	2	1
190	51	0	0	130	305	0	1	142	1	1.2	1	0	3	0
90	48	1	2	124	255	1	1	175	0	0.0	2	2	2	1
166	67	1	0	120	229	0	0	129	1	2.6	1	2	3	0

https://www.kaggle.com/ronitf/heart-disease-uci

Lab LDA

```
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis()
lda.fit(x train, y train)
print('Priors:')
print(lda.priors )
print('Means:')
print(lda.means )
print('Coefficients:')
print(lda.coef )
print('Test Accuracy:')
print(lda.score(x test, y test))
Priors:
[0.41409692 0.58590308]
Means:
[[5.70744681e+01 8.19148936e-01 4.78723404e-01 1.34882979e+02
  2.49031915e+02 1.27659574e-01 4.36170213e-01 1.40021277e+02
  5.21276596e-01 1.62446809e+00 1.18085106e+00 1.24468085e+00
  2.57446809e+001
 [5.24060150e+01 5.48872180e-01 1.36090226e+00 1.29548872e+02
  2.45052632e+02 1.27819549e-01 5.93984962e-01 1.59195489e+02
  1.35338346e-01 5.84962406e-01 1.64661654e+00 3.30827068e-01
  2.12030075e+0011
Coefficients:
[[-5.12655671e-03 -1.65128336e+00 9.42708811e-01 -1.63429905e-02
  -8.26945654e-05 3.61220910e-01 6.53320414e-01 2.61543171e-02
  -1.10225766e+00 -5.26885663e-01 9.83938578e-01 -1.00983532e+00
  -1.16829536e+00]]
Test Accuracy:
0.8026315789473685
```

LDA Metrics

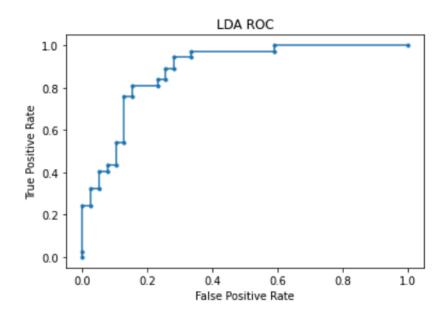
```
target names = ['class 0', 'class 1']
pred_label_lda = lda.predict(x_test)
print(classification_report(y_test, pred_label_lda, target_names=target_names))
              precision
                           recall
                                  f1-score
                                              support
     class 0
                   0.88
                             0.72
                                       0.79
                                                    39
     class 1
                   0.75
                             0.89
                                       0.81
                                                    37
                                       0.80
                                                   76
    accuracy
                                       0.80
                   0.81
                             0.80
                                                   76
   macro avg
weighted avg
                   0.81
                             0.80
                                       0.80
                                                   76
```

LDA ROC Curve

```
pred_lda = lda predict_proba
r_auc_lda = roc_auc_score(y_test, pred_lda)
print("AUC=",r_auc_lda)

lda_fpr, lda_tpr, _ = roc_curve(y_test, pred_lda)
pyplot.plot(lda_fpr, lda_tpr, marker='.', label='Logistic')
pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
pyplot.title('LDA ROC')
```

AUC= 0.8842688842688843



Outline

- Generative vs Discriminative Models
- Linear Discriminant Analysis (LDA)
 - LDA is a linear classifier
 - LDA vs Logistic Regression
 - Lab
- Density Estimation
- Naïve Bayes classifier

Essential probability concepts

• Marginalization:
$$P(B) = \sum_{v \in \text{values}(A)} P(B \land A = v)$$

• Conditional Probability:
$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

$$\bullet \quad \text{Bayes' Rule:} \quad P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

Independence:

$$A \bot B \iff P(A \land B) = P(A) \times P(B) \quad \text{INDEPENDENCE}$$

$$\leftrightarrow P(A \mid B) = P(A)$$

$$A \bot B \mid C \iff P(A \land B \mid C) = P(A \mid C) \times P(B \mid C)$$
 Conditional independence

Prior and Joint Probabilities

- Prior probability: degree of belief without any other evidence
- Joint probability: matrix of combined probabilities of a set of variables

Russell & Norvig's Alarm Domain: (boolean RVs)

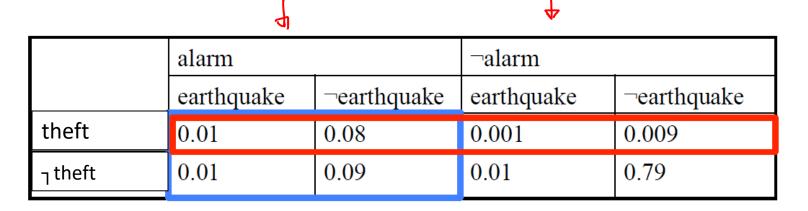
A world has a specific instantiation of variables:

(alarm
$$\wedge$$
 theft \wedge -earthquake)

The joint probability is given by:

P(Alarm, Theft) =
$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & \end{bmatrix}$$
 theft $\begin{bmatrix} & & & & \\ & & & \\ & & & \\ \end{bmatrix}$ theft $\begin{bmatrix} & & & \\ & & \\ \end{bmatrix}$ 0.09 \ 0.01 \ 0.09 \ 0.001 \ 0.08 \ \ P(T) = P(T) A \ P(T) A \ P(A) + P(T) A \ P(A) + P(T) A \ P(A) \ P(A) + P(A) \ P(A

Computing Prior Probabilities



$$P[T] = \sum_{a_1 e} P[TA] Abarm = a n Earthquake = e) = 0.1$$

The Joint Distribution

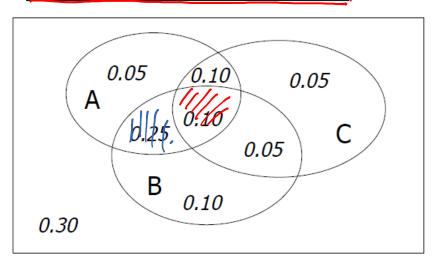
Recipe for making a joint distribution of d variables:

- 1. Make a truth table listing all combinations of values of your variables (if there are d Boolean variables then the table will have 2^d rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

e.g., Boolean variables A, B, C

A	В	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

g entries



Learning Joint Distributions

Step 1:

Build a JD table for your attributes in which the probabilities are unspecified

A	В	С	Prob
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Step 2:

Then, fill in each row with:

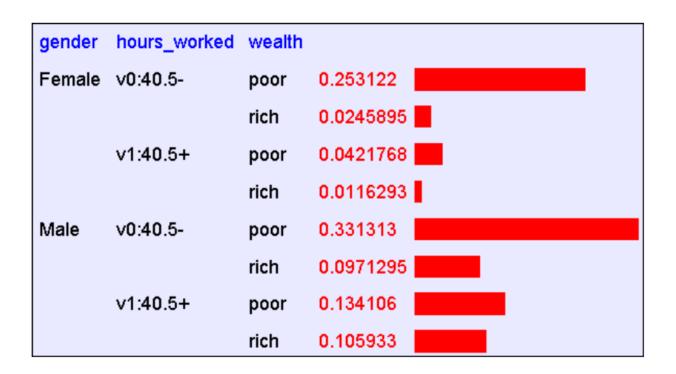
$$\hat{P}(\text{row}) = \frac{\text{records matching row}}{\text{total number of records}}$$

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Fraction of all records in which A and B are true but C is false

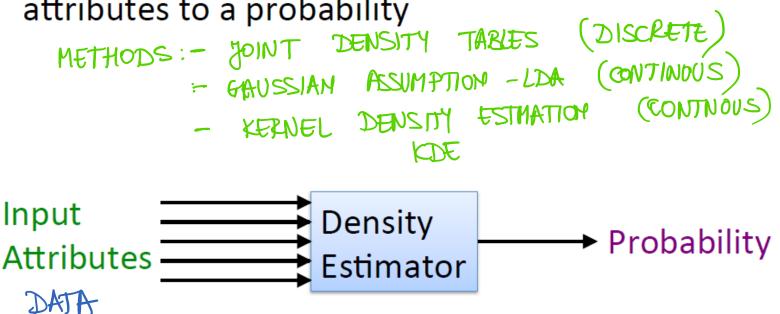
Example – Learning Joint Probability Distribution

This Joint PD was obtained by learning from three attributes in the UCI "Adult" Census Database [Kohavi 1995]

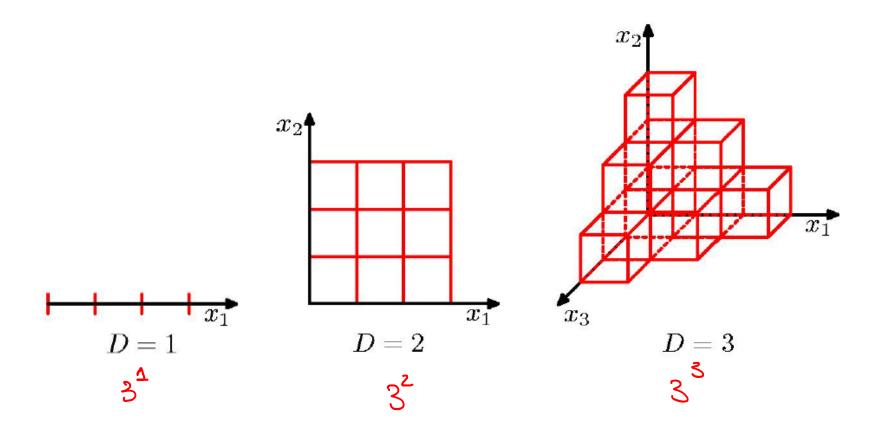


Density Estimation

- Our joint distribution learner is an example of something called Density Estimation
- A Density Estimator learns a mapping from a set of attributes to a probability



Curse of Dimensionality



Naïve Bayes Classifier

Naïve Bayes Classifier

Problem: estimating the joint density isn't practical

Severely overfits, as we saw before

However, if we make the assumption that the attributes are independent given the class label, estimation is easy!

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!