DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

October 15 2020

Outline

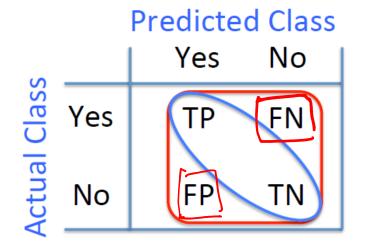
- Project discussion
- Evaluation of classifiers
 - Metrics
 - ROC curves
- Linear Discriminant Analysis (LDA)

Project Topic Discussion

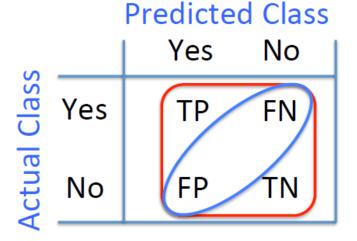
- Room 1: Health
- Room 2: Image/Vision
- Room 3: Music
- Room 4: NLP
- Room 5: Sports/Finance

Accuracy and Error

Given a dataset of P positive instances and N negative instances: CONFUSION MATRIX



$$accuracy = \frac{TP + TN}{P + N}$$

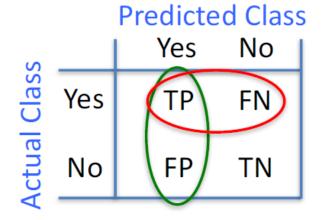


error =
$$1 - \frac{TP + TN}{P + N}$$

= $\frac{FP + FN}{P + N}$

Confusion Matrix

• Given a dataset of P positive instances and N negative instances:



$$accuracy = \frac{TP + TN}{P + N}$$

Imagine using classifier to identify positive cases (i.e., for information retrieval)

$$precision = \frac{TP}{TP + FP}$$

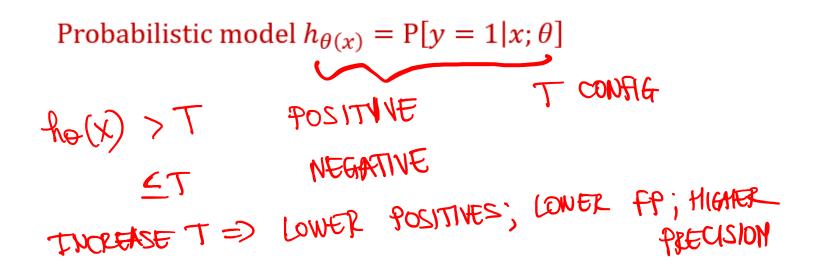
Probability that classifier predicts positive correctly

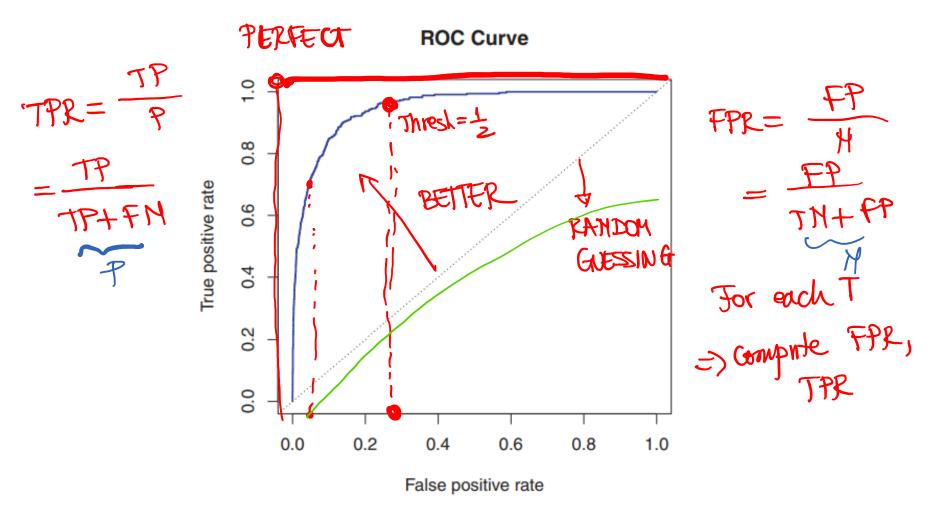
$$recall = \frac{TP}{TP + FN}$$

Probability that actual class is predicted correctly

Classifiers can be tuned

- Logistic regression sets by default the threshold at 0.5 for classifying positive and negative instances
- Some applications have strict constraints on false positives (or other metrics)
 - Example: very low false positives in security (spam)



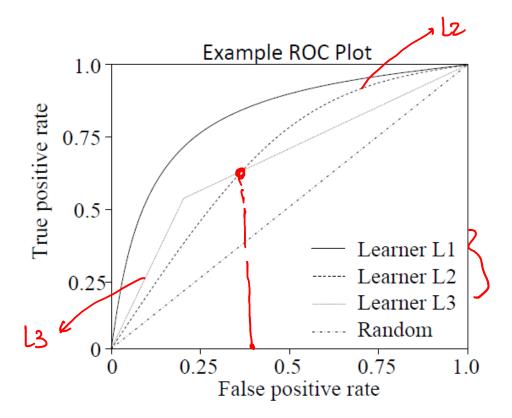


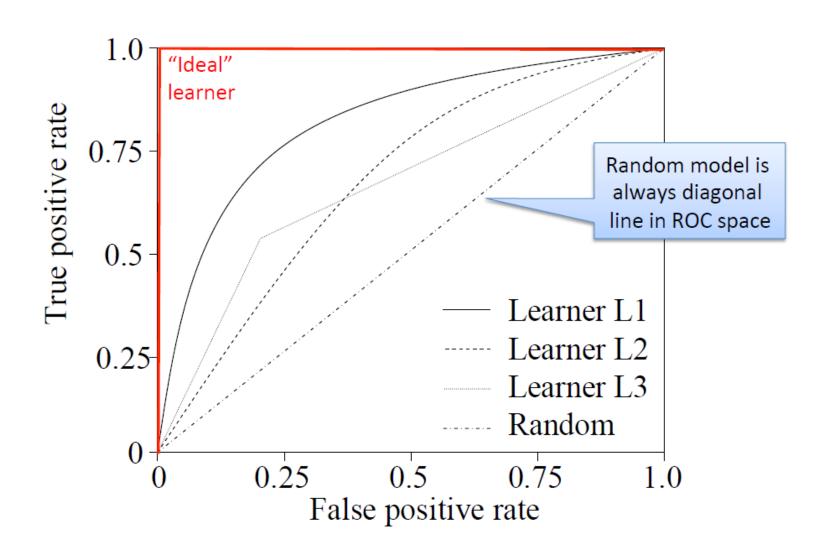
- Receiver Operating Characteristic (ROC)
- Determine operating point (e.g., by fixing false positive rate)

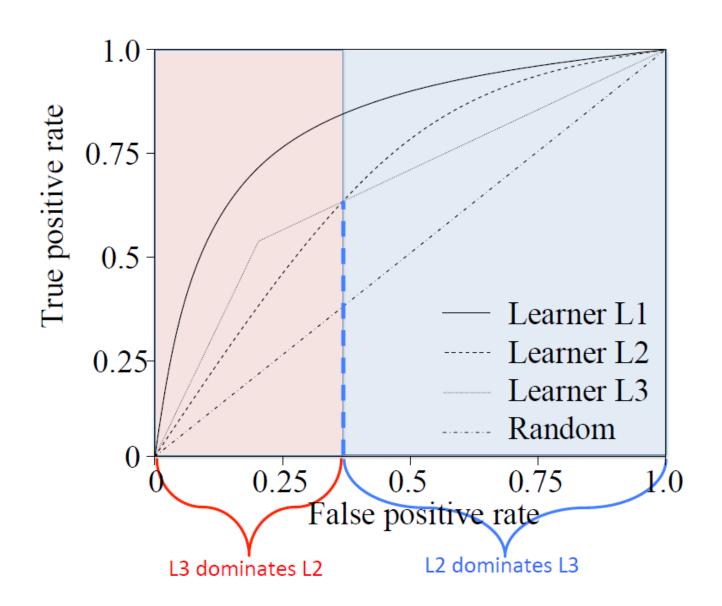
Performance Depends on Threshold

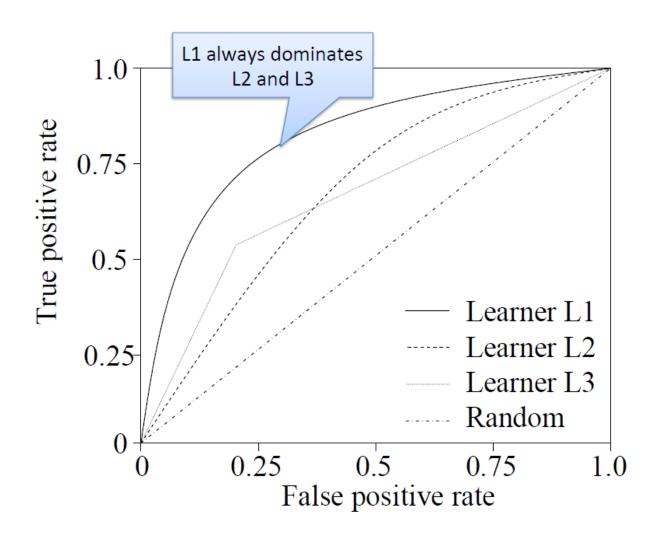
Predict positive if $P(y = 1 \mid \mathbf{x}) > T$ otherwise negative

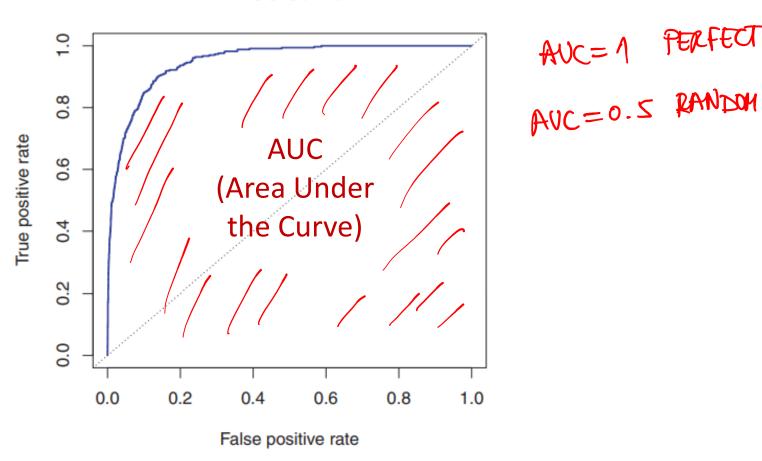
- Number of TPs and FPs depend on threshold T
- As we vary T we get different (TPR, FPR) points







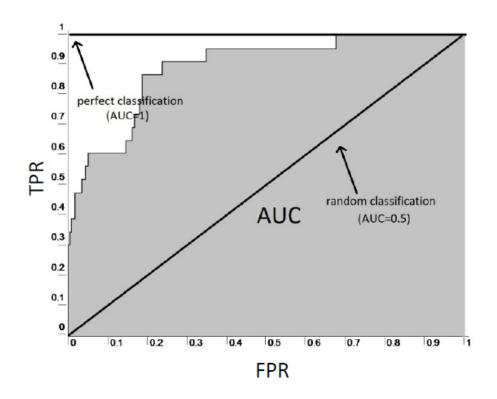


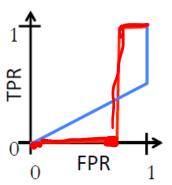


- Another useful metric: Area Under the Curve (AUC)
- The closest to 1, the better!

Area Under the ROC Curve

- Can take area under the ROC curve to summarize performance as a single number
 - Be cautious when you see only AUC reported without a ROC curve; AUC can hide performance issues



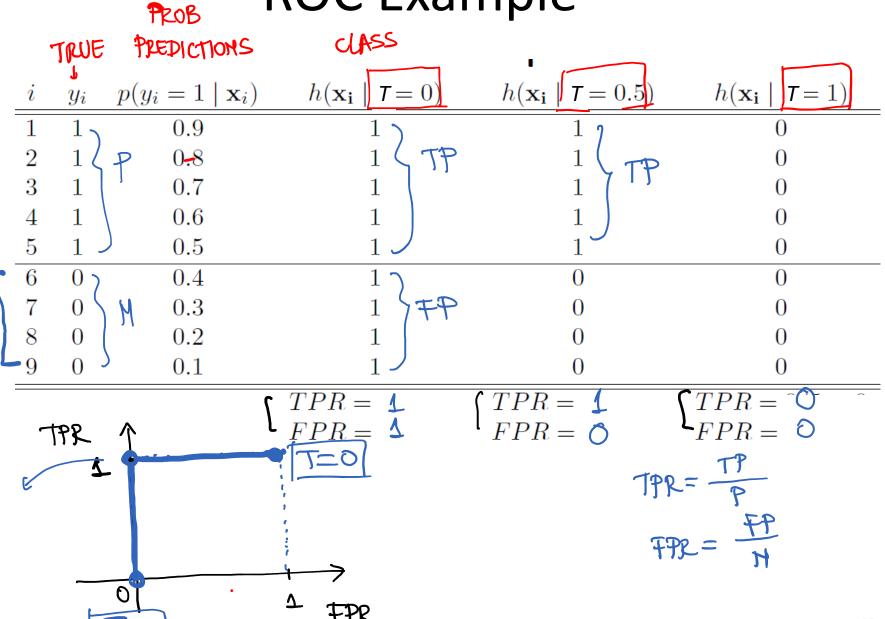


Same AUC, very different performance

ROC Curve Example

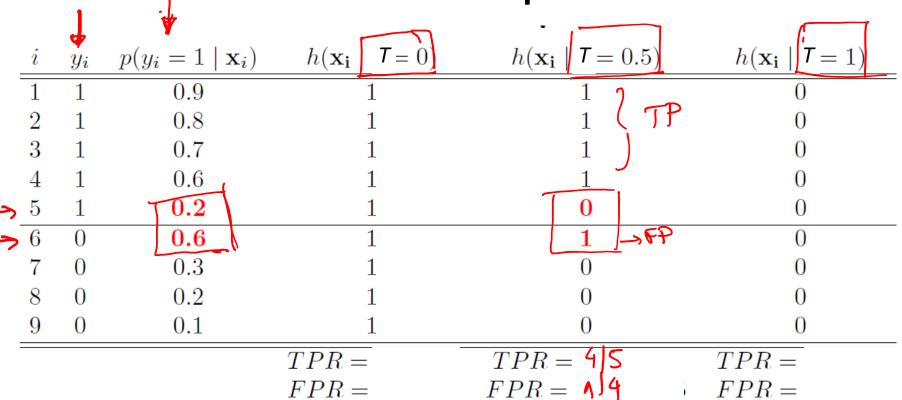
- Instructions
 - Use slides 18 and 20
 - Draw a ROC curve for each of these
 - There will be 3 points on each ROC curve, one for each threshold (T = 0, T = 0.5, T = 1)

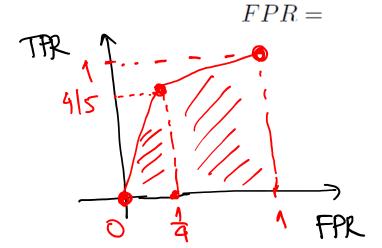
ROC Example



たって

ROC Example





Linear Classifier Lab

```
data = pd.read_csv('heart.csv')
data = data.dropna()
x_columns = data.columns != 'target'
data = utils.shuffle(data)
data.head()

age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
215	43	0	0	132	341	1	0	136	1	3.0	1	0	3	0
145	70	1	1	156	245	0	0	143	0	0.0	2	0	2	1
190	51	0	0	130	305	0	1	142	1	1.2	1	0	3	0
90	48	1	2	124	255	1	1	175	0	0.0	2	2	2	1
166	67	1	0	120	229	0	0	129	1	2.6	1	2	3	0

https://www.kaggle.com/ronitf/heart-disease-uci

Logistic Regression

```
split = int(len(data) * 3/4)
x, y = data.loc[:, data.columns != 'target'], data['target']
x_train, x_test = x.iloc[:split], x.iloc[split:]
y_train, y_test = y.iloc[:split], y.iloc[split:]

logistic_model = LogisticRegression(max_iter=10000).fit(x_train, y_train)
print(len(data))
```

2 2 2

```
pred_label = logistic_model.predict(x_test)
accuracy = logistic_model.score(x_test, y_test)
error = 1-accuracy
print("Accuracy=",accuracy)
print("Error=",error)

Accuracy= 0.8289473684210527
Error= 0.17105263157894735
```

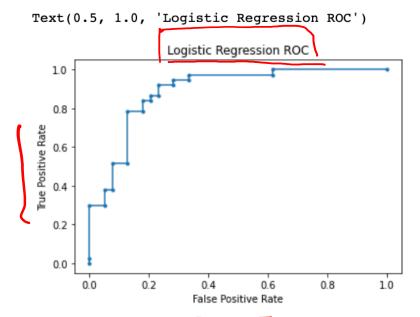
Metrics

```
from sklearn.metrics import classification_report

target_names = ['class 0', 'class 1']
print(classification_report(y_test, pred_label, target_names=target_names))

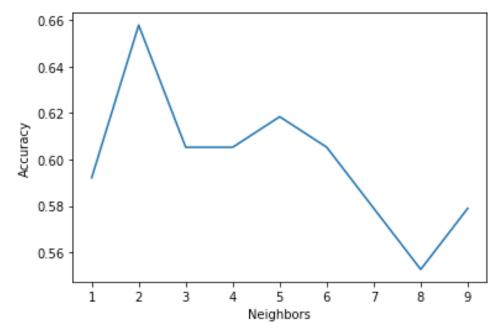
precision recall f1-score support
```

		precision	recall	f1-score	support
	class 0	0.86	0.79	0.83	39
	class 1	0.80	0.86	0.83	37
	accuracy			0.83	76
2	macro avg	0.83	0.83	0.83	76
)	weighted avg	0.83	0.83	0.83	76



Lab kNN

```
from sklearn.neighbors import KNeighborsClassifier
accuracies = []
neighbors = list(range(1, 10))
knns = []
for n in neighbors:
    knn = KNeighborsClassifier(n_neighbors=n)
    knn.fit(x_train, y_train)
    knns.append(knn)
    accuracies.append(knn.score(x_test, y_test))
plt.figure().add_subplot(111, xlabel="Neighbors", ylabel="Accuracy")
plt.plot(neighbors, accuracies)
plt.show()
```



Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!