DS 5220

Supervised Machine Learning and Learning Theory

Alina Oprea
Associate Professor, CCIS
Northeastern University

Logistics

- HW 2 is due on Oct. 8
- Exams
 - Midterm: Monday, Oct. 28
 - Final exam: Wednesday, Dec. 4
- Project
 - Proposal due on Oct. 21; teams of 2-3
 - Project presentation on Dec. 9
 - Project report due on Dec. 10
 - Project ideas and datasets posted on Piazza
 - Example projects from DS 4400 posted on Piazza

Project Proposal

- Project Title
- Project Team
- Problem Description
 - What is the prediction problem you are trying to solve?
- Dataset
 - Link to data, brief description, number of records, feature dimensionality (at least 10K records)
- Approach and methodology
 - Normalization
 - Feature selection
 - Machine learning models you will try (at least 3)
 - Splitting into training and testing, cross validation
 - Language and packages you plan to use
- Metrics (how you will evaluate your models)

Outline

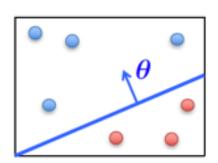
- Logistic regression
 - Classification based on probability
 - Gradient descent for logistic regression
- Evaluation metrics
 - Confusion matrix
 - ROC curves
- Lab for linear classification

Review

- Regularization is a general method to avoid over-fitting
- Cross-validation should be performed to
 - Improve model generalization
 - Avoid over-fitting
 - Choose hyper parameters (k in kNN)
- Logistic regression is a linear classifier that predicts class probability
 - Classification based on probability; interpretability
 - MLE objective: Cross-entropy loss

Linear Classifiers

Linear classifiers: represent decision boundary by hyperplane



$$h_{\theta}(x) = f(\theta^T x)$$
 linear function

- If $\theta^T x > 0$ classify 1
- If $\theta^T x < 0$ classify 0

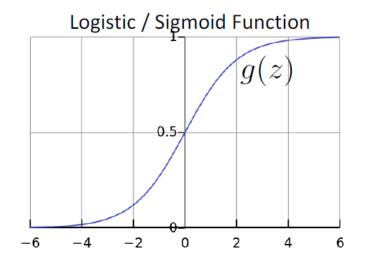
All the points x on the hyperplane satisfy: $\theta^T x = 0$

Logistic Regression

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{\boldsymbol{\theta}}(\boldsymbol{x})$ should give $P(Y=1|X;\boldsymbol{\theta})$ - Want $0 \leq h_{\boldsymbol{\theta}}(\boldsymbol{x}) \leq 1$
- Logistic regression model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$



Logistic Regression is a linear classifier!

Cross-Entropy Objective

$$P(Y = y_i | X = x_i; \theta) = h_{\theta}(x_i)^{y_i} (1 - h_{\theta}(x_i))^{1 - y_i}$$

$$\theta_{MLE} = \operatorname{argmax}_{\theta} \sum_{i=1}^{N} \log P[Y = y_i | X = x_i; \theta]$$

$$= \operatorname{argmax}_{\theta} \sum_{i=1}^{N} y_i \log h_{\theta}(x_i) + (1 - y_i) \log \left(1 - h_{\theta}(x_i)\right)$$

Logistic regression objective

$$\min_{\theta} J(\theta)$$

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Gradient Descent for Logistic Regression

$$J(\theta) = -\sum_{i=1}^{N} \left[y_i \log h_{\theta}(x_i) + (1 - y_i) \log \left(1 - h_{\theta}(x_i) \right) \right]$$
$$J(\theta) = -\sum_{i=1}^{n} C_i$$

Want $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

- Initialize heta
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

Computing Gradients

Derivative of sigmoid

$$-g(z) = \frac{1}{1+e^{-z}}; g'(z) = \frac{e^{-z}}{(1+e^{-z})^2} = g(z)(1-g(z))$$

Derivative of hypothesis

$$-h_{\theta}(x) = g(\theta^{T}x) = g(\theta_{j}x_{j} + \sum_{k \neq j} \theta_{k}x_{k})$$
$$-\frac{\partial h_{\theta}(x)}{\partial \theta_{j}} = \frac{\partial g(\theta^{T}x)}{\partial \theta_{j}}x_{j} = g(\theta^{T}x)(1 - g(\theta^{T}x))x_{j}$$

• Derivation of C_i

$$-\frac{\partial C_i}{\partial \theta_j} = y_i \frac{1}{h_{\theta}(x_i)} g(\theta^T x_i) \Big(1 - g(\theta^T x_i) \Big) x_{ij} -$$

$$(1 - y_i) \frac{1}{1 - h_{\theta}(x_i)} g(\theta^T x_i) \Big(1 - g(\theta^T x_i) \Big) x_{ij}$$

$$= \Big(y_i - h_{\theta}(x_i) \Big) x_{ij}$$

Gradient Descent for Logistic Regression

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Want $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$

- Initialize θ
- Repeat until convergence (simultaneous update for j = 0 ... d)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)$$

$$\theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_{ij}$$

Gradient Descent for Logistic Regression

Want
$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

- Initialize θ
- Repeat until convergence

(simultaneous update for $j = 0 \dots d$)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)$$

$$\theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_{ij}$$

This looks IDENTICAL to Linear Regression!

However, the form of the model is very different:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Regularized Logistic Regression

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

We can regularize logistic regression exactly as before:

$$J_{\text{regularized}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda \sum_{j=1}^{d} \theta_j^2$$
$$= J(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

L2 regularization

Classifier Evaluation

- Classification is a supervised learning problem
 - Prediction is binary or multi-class
- Classification techniques
 - Linear classifiers
 - Perceptron (online or batch mode)
 - Logistic regression (probabilistic interpretation)
 - Instance learners
 - kNN: need to store entire training data
- Cross-validation should be used for parameter selection and estimation of model error

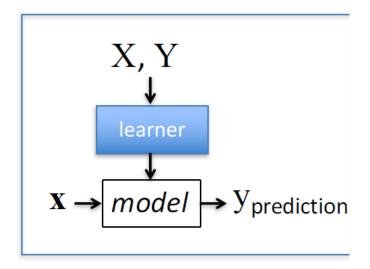
Evaluation of classifiers

Given: labeled training data $X, Y = \{\langle \boldsymbol{x}_i, y_i \rangle\}_{i=1}^n$

• Assumes each $oldsymbol{x}_i \sim \mathcal{D}(\mathcal{X})$

Train the model:

 $model \leftarrow classifier.train(X, Y)$



Apply the model to new data:

• Given: new unlabeled instance $x \sim \mathcal{D}(\mathcal{X})$ $y_{\text{prediction}} \leftarrow \textit{model}. \text{predict}(\mathbf{x})$

Classification Metrics

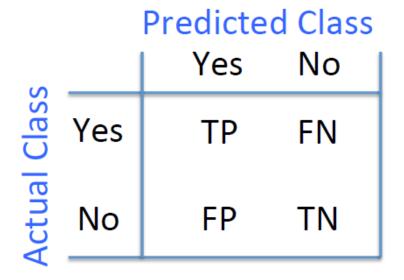
$$accuracy = \frac{\# correct predictions}{\# test instances}$$

$$error = 1 - accuracy = \frac{\# incorrect predictions}{\# test instances}$$

- Training set accuracy and error
- Testing set accuracy and error

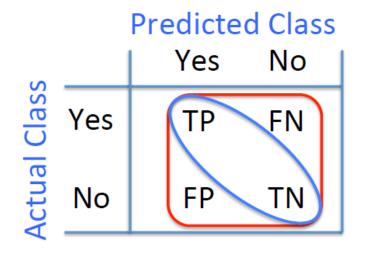
Confusion Matrix

Given a dataset of P positive instances and N negative instances:

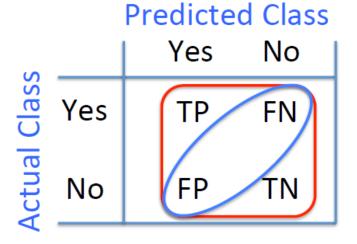


Accuracy and Error

Given a dataset of P positive instances and N negative instances:



$$accuracy = \frac{TP + TN}{P + N}$$

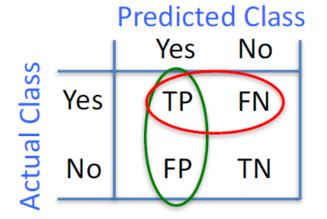


error =
$$1 - \frac{TP + TN}{P + N}$$

= $\frac{FP + FN}{P + N}$

Confusion Matrix

Given a dataset of P positive instances and N negative instances:



$$accuracy = \frac{TP + TN}{P + N}$$

Imagine using classifier to identify positive cases (i.e., for information retrieval)

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

Probability that classifier predicts positive correctly

Probability that actual class is predicted correctly

Why One Metric is Not Enough

Assume that in your training data, Spam email is 1% of data, and Ham email is 99% of data

- Scenario 1
 - Have classifier always output HAM!
 - What is the accuracy?
- Scenario 2
 - Predict one SPAM email as SPAM, all other emails as legitimate
 - What is the precision? 100%
- Scenario 3
 - Output always SPAM!
 - What is the recall?
 100%

Precision & Recall

Precision

- the fraction of positive predictions that are correct
- P(is pos | predicted pos)

$$precision = \frac{TP}{TP + FP}$$

Recall

- fraction of positive instances that are identified
- P(predicted pos | is pos)

$$recall = \frac{TP}{TP + FN}$$

- You can get high recall (but low precision) by only predicting positive
- Recall is a non-decreasing function of the # positive predictions
- Typically, precision decreases as either the number of positive predictions or recall increases
- Precision & recall are widely used in information retrieval

F-Score

Combined measure of precision/recall tradeoff

$$F_1 = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

- This is the harmonic mean of precision and recall
- In the F₁ measure, precision and recall are weighted evenly
- Can also have biased weightings that emphasize either precision or recall more ($F_2 = 2 \times \text{recall}$; $F_{0.5} = 2 \times \text{precision}$)
- Limitations:
 - F-measure can exaggerate performance if balance between precision and recall is incorrect for application
 - Don't typically know balance ahead of time

A Word of Caution

Consider binary classifiers A, B, C:

- Clearly A is useless, since it always predicts 1
- B is slightly better than C
 - less probability mass wasted on the off-diagonals
- But, here are the performance metrics:

Metric	A	В	\mathbf{C}
Accuracy	0.9	0.9	0.88
Precision	0.9	1.0	1.0
Recall	1.0	0.888	0.8667
F-score	0.947	0.941	0.9286

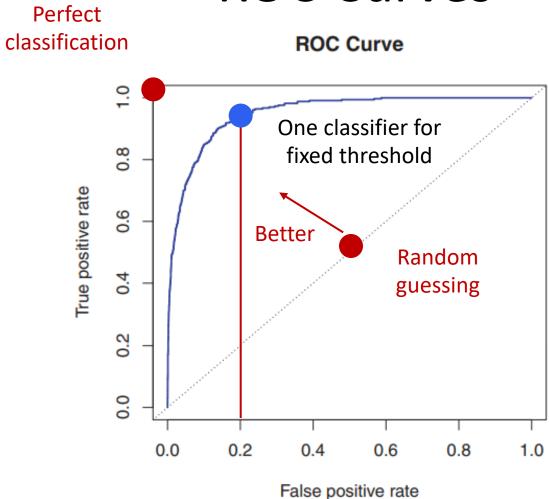
Classifiers can be tuned

- Logistic regression sets by default the threshold at 0.5 for classifying positive and negative instances
- Some applications have strict constraints on false positives (or other metrics)
 - Example: very low false positives in security (spam)
- Solution: choose different threshold

```
Probabilistic model h_{\theta(x)} = P[y = 1|x; \theta]
```

- Predict y = 1 if $h_{\boldsymbol{\theta}}(\boldsymbol{x}) \geq \mathsf{T}$
- Predict y = 0 if $h_{oldsymbol{ heta}}(oldsymbol{x}) < ext{ T}$

Higher T, lower FP Lower T, lower FN

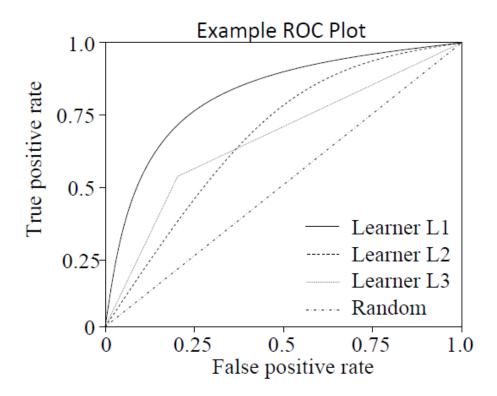


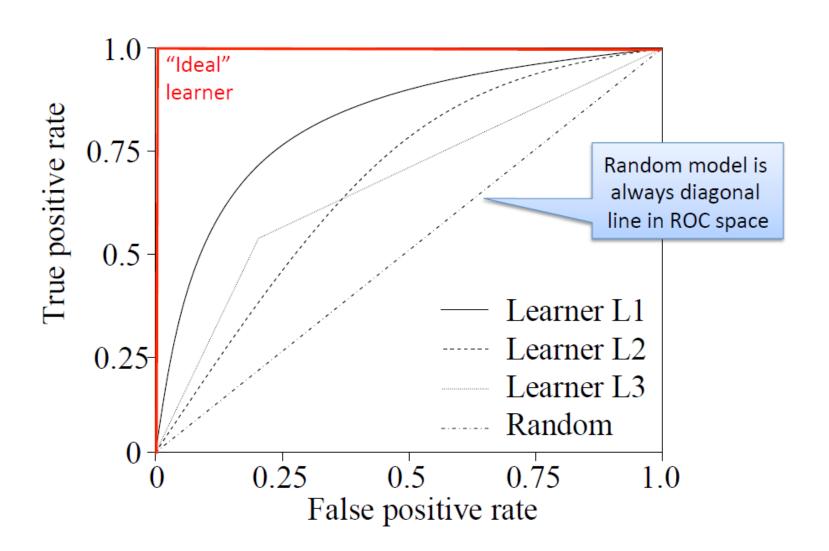
- Receiver Operating Characteristic (ROC)
- Determine operating point (e.g., by fixing false positive rate)

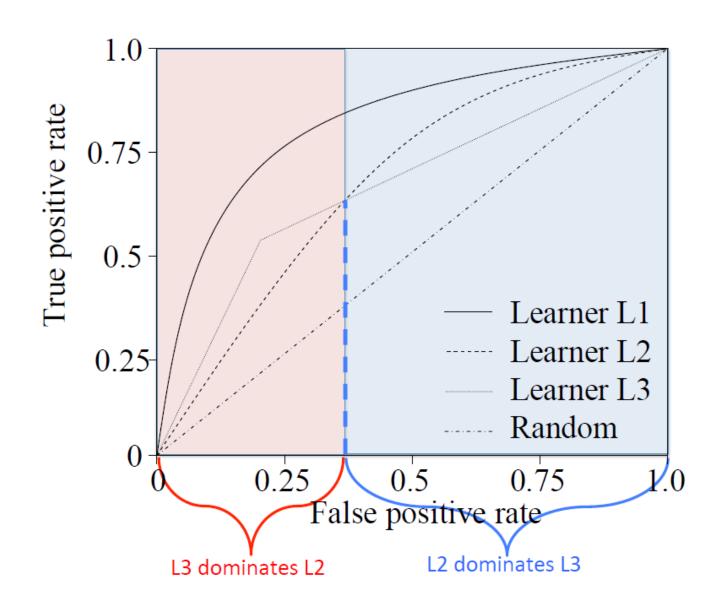
Performance Depends on Threshold

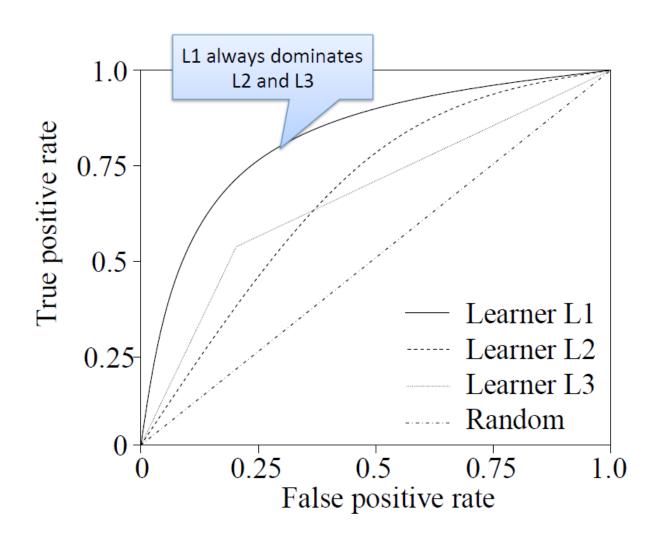
Predict positive if $P(y = 1 \mid \mathbf{x}) > \theta$, otherwise negative

- Number of TPs and FPs depend on threshold heta
- As we vary θ , we get different (TPR, FPR) points

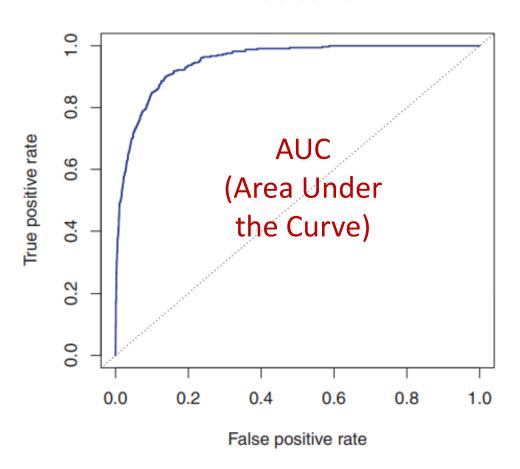








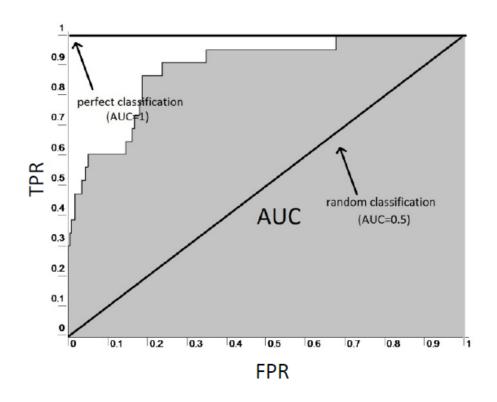
ROC Curves

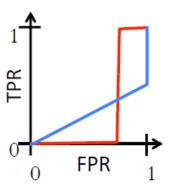


- Another useful metric: Area Under the Curve (AUC)
- The closest to 1, the better!

Area Under the ROC Curve

- Can take area under the ROC curve to summarize performance as a single number
 - Be cautious when you see only AUC reported without a ROC curve; AUC can hide performance issues

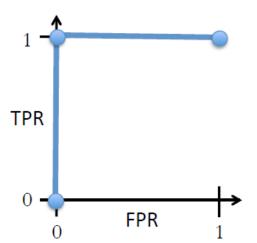




Same AUC, very different performance

ROC Example

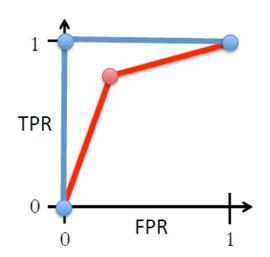
i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \theta = 0)$	$h(\mathbf{x_i} \mid \theta = 0.5)$	$h(\mathbf{x_i} \mid \theta = 1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.5	1	1	0
6	0	0.4	1	0	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0



TPR = 5/5 = 1	TPR = 5/5 = 1	TPR = 0/5 = 0
FPR = 4/4 = 1	FPR = 0/4 = 0	FPR = 0/4 = 0

ROC Example

i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \theta = 0)$	$h(\mathbf{x_i} \mid \theta = 0.5)$	$h(\mathbf{x_i} \mid \theta = 1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.2	1	0	0
6	0	0.6	1	1	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0



TPR = 5/5 = 1	TPR = 4/5 = 0.8	TPR = 0/5 = 0
FPR = 4/4 = 1	FPR = 1/4 = 0.25	FPR = 0/4 = 0

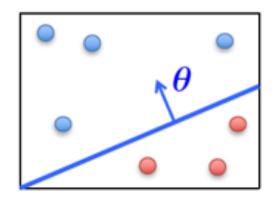
Linear models

Perceptron

$$h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x})$$

Logistic regression

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$



LDA

$$Max_k \ \delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

LDA vs Logistic Regression

- Logistic regression computes directly Pr[Y = 1 | X = x] by assuming sigmoid function
 - Uses Maximum Likelihood Estimation
 - Discriminative Model
- LDA uses Bayes Theorem to estimate it
 - Estimates mean, co-variance, and prior from training data
 - Generative model
 - Assumes Gaussian distribution for $f_k(x) = \Pr[X = x | Y = k]$
- Which one is better?
 - LDA can be sensitive to outliers
 - LDA works well for Gaussian distribution
 - Logistic regression is more complex to solve, but more expressive

Linear Classifier Lab

```
data = pd.read_csv('heart.csv')
data = data.dropna()
x_columns = data.columns != 'target'
data = utils.shuffle(data)
data.head()
```

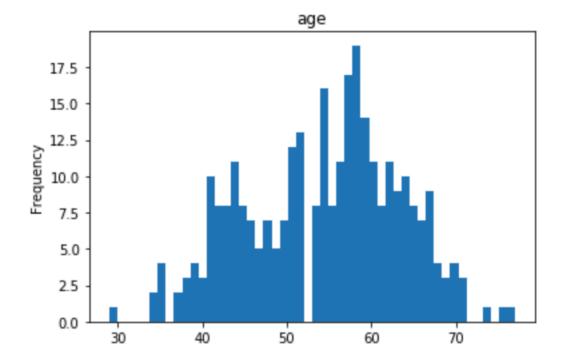
	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
215	43	0	0	132	341	1	0	136	1	3.0	1	0	3	0
145	70	1	1	156	245	0	0	143	0	0.0	2	0	2	1
190	51	0	0	130	305	0	1	142	1	1.2	1	0	3	0
90	48	1	2	124	255	1	1	175	0	0.0	2	2	2	1
166	67	1	0	120	229	0	0	129	1	2.6	1	2	3	0

https://www.kaggle.com/ronitf/heart-disease-uci

Lab, cont.

```
import matplotlib.pyplot as plt

for column in ('age', 'chol', 'trestbps'):
    plt.hist(data[column], bins=50)
    plt.gca().set(title=column, ylabel='Frequency')
    plt.show()
```



Lab, Logistic Regression

```
split = int(len(data) * 3/4)
x, y = data.loc[:, data.columns != 'target'], data['target']
x_train, x_test = x.iloc[:split], x.iloc[split:]
y_train, y_test = y.iloc[:split], y.iloc[split:]

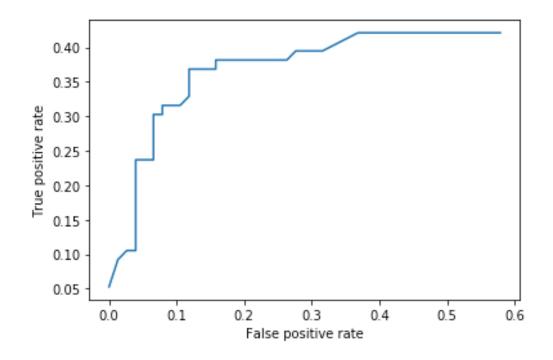
logit_model = sm.Logit(y_train, x_train)
result = logit_model.fit()
print(result.summary2())
```

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
age	0.0221	0.0222	0.9955	0.3195	-0.0214	0.0656
sex	-1.8552	0.5683	-3.2643	0.0011	-2.9691	-0.7413
ср	0.8517	0.2224	3.8290	0.0001	0.4158	1.2877
trestbps	-0.0208	0.0113	-1.8346	0.0666	-0.0431	0.0014
chol	-0.0036	0.0042	-0.8532	0.3935	-0.0118	0.0046
fbs	0.5359	0.6673	0.8031	0.4219	-0.7720	1.8439
restecg	0.3930	0.4229	0.9292	0.3528	-0.4359	1.2219
thalach	0.0318	0.0100	3.1650	0.0016	0.0121	0.0514
exang	-0.6497	0.4920	-1.3203	0.1867	-1.6140	0.3147
oldpeak	-0.5583	0.2725	-2.0492	0.0404	-1.0923	-0.0243
slope	1.0992	0.4634	2.3721	0.0177	0.1910	2.0074
ca	-0.7973	0.2362	-3.3754	0.0007	-1.2603	-0.3344
thal	-1.0147	0.3628	-2.7973	0.0052	-1.7257	-0.3038
=========	=======	=======	=======	======	=======	======

Metrics for LR

```
predictions = result.predict(x_test)
print_metrics(predictions, y_test)
plot_roc(predictions)
```

TPR: 0.88 FPR: 0.20 TNR: 0.80 FNR: 0.12



Plot Metrics and ROC

```
def plot roc(test predictions):
    tprs, fprs = [], []
    for thresh in range(0, 100, 1):
        predicted labels = np.array(list(map(int, (test predictions > thresh / 100))))
        tpr = sum((y test == 1) & (predicted labels == True)) / len(y test)
        fpr = sum((y test == 0) & (predicted labels == True)) / len(y test)
       tprs.append(tpr)
       fprs.append(fpr)
    plt.figure().add subplot(111, xlabel="False positive rate", ylabel="True positive rate")
   plt.plot(fprs, tprs)
   plt.show()
def print metrics(y pred, y true):
    y pred = np.array(list(map(int, (y pred > .5))))
    print("TPR: %.2f" % (sum((y true == 1) & (y pred == 1)) / sum(y true == 1)))
    print("FPR: %.2f" % (sum((y true == 0) & (y pred == 1)) / sum(y true == 0)))
    print("TNR: %.2f" % (sum((y true == 0) & (y pred == 0)) / sum(y true == 0)))
    print("FNR: %.2f" % (sum((y true == 1) & (y pred == 0)) / sum(y true == 1)))
```

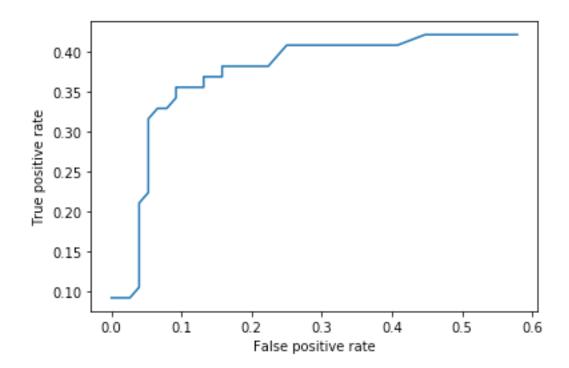
Lab LDA

```
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis()
lda.fit(x train, y train)
print('Priors:')
print(lda.priors )
print('Means:')
print(lda.means )
print('Coefficients:')
print(lda.coef )
print('Test Accuracy:')
print(lda.score(x test, y test))
Priors:
[0.41409692 0.58590308]
Means:
[[5.70744681e+01 8.19148936e-01 4.78723404e-01 1.34882979e+02
  2.49031915e+02 1.27659574e-01 4.36170213e-01 1.40021277e+02
  5.21276596e-01 1.62446809e+00 1.18085106e+00 1.24468085e+00
  2.57446809e+001
 [5.24060150e+01 5.48872180e-01 1.36090226e+00 1.29548872e+02
  2.45052632e+02 1.27819549e-01 5.93984962e-01 1.59195489e+02
  1.35338346e-01 5.84962406e-01 1.64661654e+00 3.30827068e-01
  2.12030075e+0011
Coefficients:
[[-5.12655671e-03 -1.65128336e+00 9.42708811e-01 -1.63429905e-02
  -8.26945654e-05 3.61220910e-01 6.53320414e-01 2.61543171e-02
  -1.10225766e+00 -5.26885663e-01 9.83938578e-01 -1.00983532e+00
  -1.16829536e+00]]
Test Accuracy:
0.8026315789473685
```

LDA Metrics

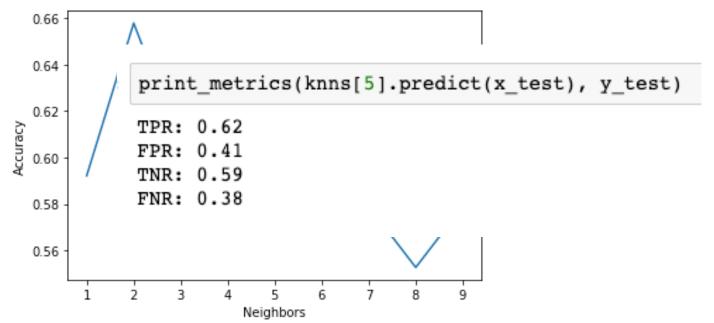
```
predictions = lda.predict_proba(x_test)[:,1]
print_metrics(predictions, y_test)
plot_roc(predictions)
```

TPR: 0.91 FPR: 0.27 TNR: 0.73 FNR: 0.09



Lab kNN

```
from sklearn.neighbors import KNeighborsClassifier
accuracies = []
neighbors = list(range(1, 10))
knns = []
for n in neighbors:
    knn = KNeighborsClassifier(n_neighbors=n)
    knn.fit(x_train, y_train)
    knns.append(knn)
    accuracies.append(knn.score(x_test, y_test))
plt.figure().add_subplot(111, xlabel="Neighbors", ylabel="Accuracy")
plt.plot(neighbors, accuracies)
plt.show()
```



Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Linear classification lab designed by Yuxuan Wang
- Thanks!