DS 5220

Supervised Machine Learning and Learning Theory

Alina Oprea
Associate Professor, CCIS
Northeastern University

Outline

- Brief review
- Gradient descent
 - Batch algorithm
 - Line search optimization
- Gradient descent for linear regression
- Regularization
 - Ridge and Lasso regression
 - Gradient descent for ridge regression

Review

- Regression
 - Linear regression
 - MSE loss
 - Closed-form solution
 - Simple and multiple regression
 - Bias-variance tradeoff

- Classification
 - Linear models
 - Perceptron
 - Generative models:
 Linear Discriminant
 Analysis (LDA)

Training algorithms

- Linear Regression
 - Minimize MSE
 - Compute closed-form solution (linear model that minimizes the MSE)

LDA

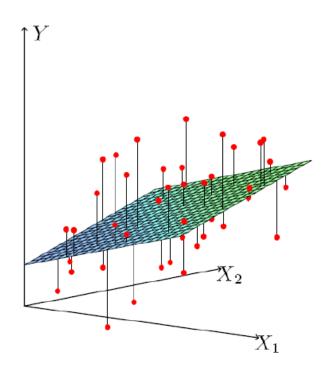
- Estimating probabilities of each class using Bayes
 Theorem
- Learn normal distribution of data in each class
- Estimate mean vector and covariance matrix

Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$
- MSE = $\frac{1}{N}\sum (\theta^T x_i y_i)^2$ Loss / cost

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

What are the drawbacks of computing the closed-form solution?



How to optimize loss functions?

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$
- $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta^T x_i y_i)^2$ Loss / cost
 - Strictly convex function (unique minimum)
- General method to optimize a multivariate function
 - Practical (low asymptotic complexity)
 - Convergence guarantees to global minimum

What Strategy to Use?

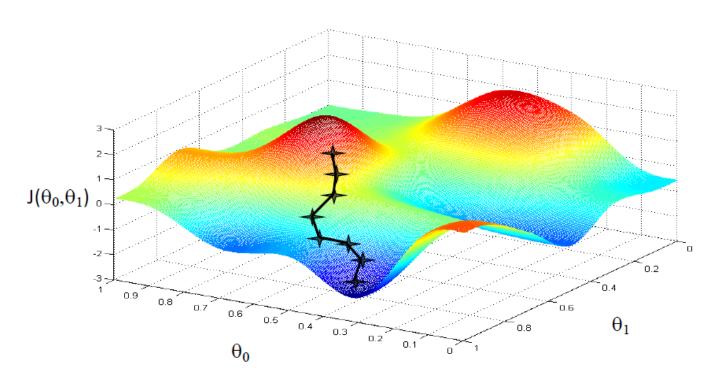
Follow the Slope

Follow the direction of steepest descent!

How to optimize $J(\theta)$?

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$

Direction of steepest descent!



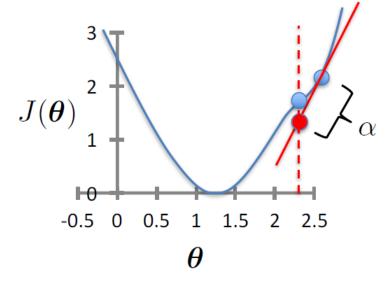
Batch Gradient Descent

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



- Gradient = slope of line tangent to curve
- Function decreases faster in negative direction of gradient
- Step is proportional to learning rate

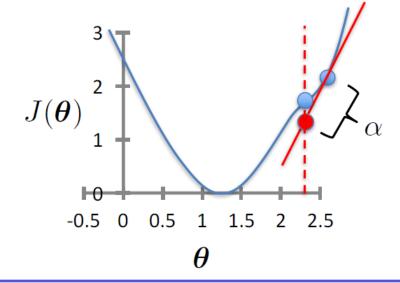
Batch Gradient Descent

- Initialize θ
- Repeat until convergence

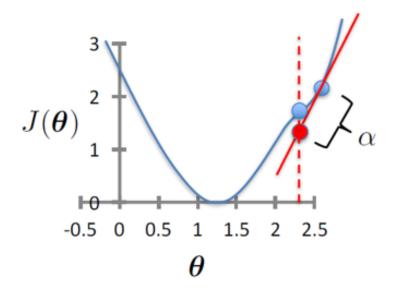
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

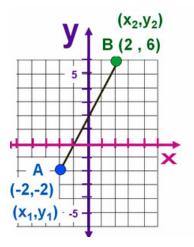
simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



Vector update rule: $\theta \leftarrow \theta - \frac{\partial J(\theta)}{\partial \theta}$



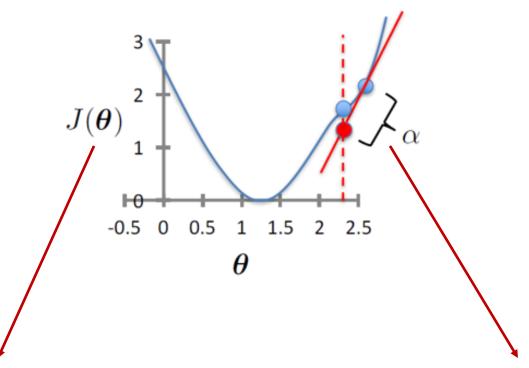


The Gradient "m" is:

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \underline{\Delta Y}$$

$$m = 6 - \frac{2}{2}$$

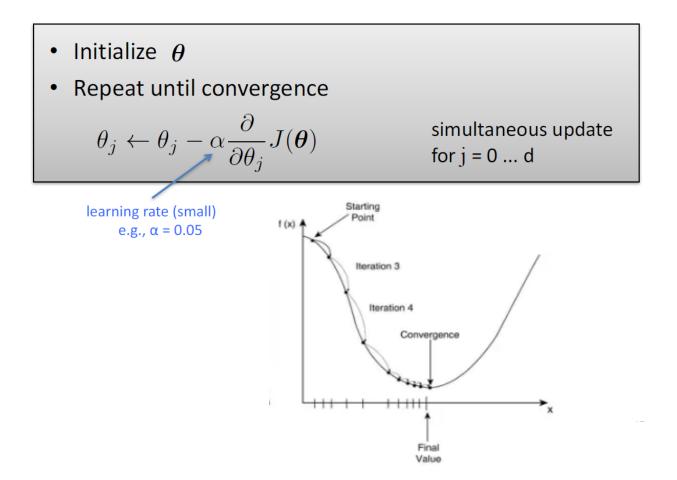
$$m = 8/4 = 2\sqrt{}$$



- If θ is on the left of minimum, slope is negative
- Increase value of heta

- If θ is on the right of minimum, slope is positive
- Decrease value of θ

In both cases θ gets closer to minimum



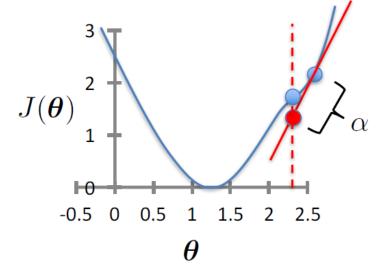
As approach minimum, slope gets smaller (GD takes smaller steps)

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



- What happens when θ reaches a local minimum?
- The slope is 0, and gradient descent converges!
- Strictly convex functions only have global minimum

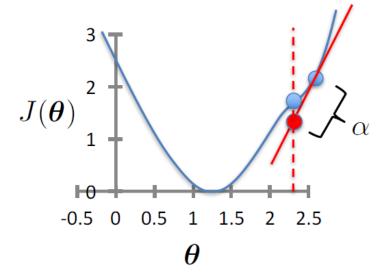
Stopping Condition

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



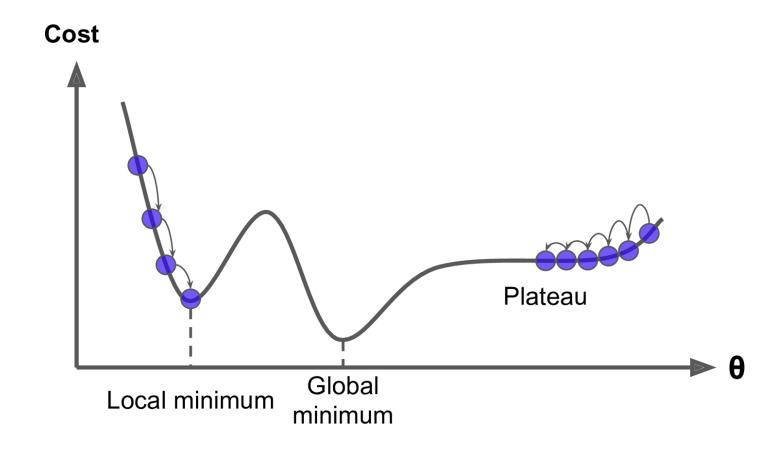
- When should the algorithm stop?
- When the update in θ is below some threshold

Complex loss function



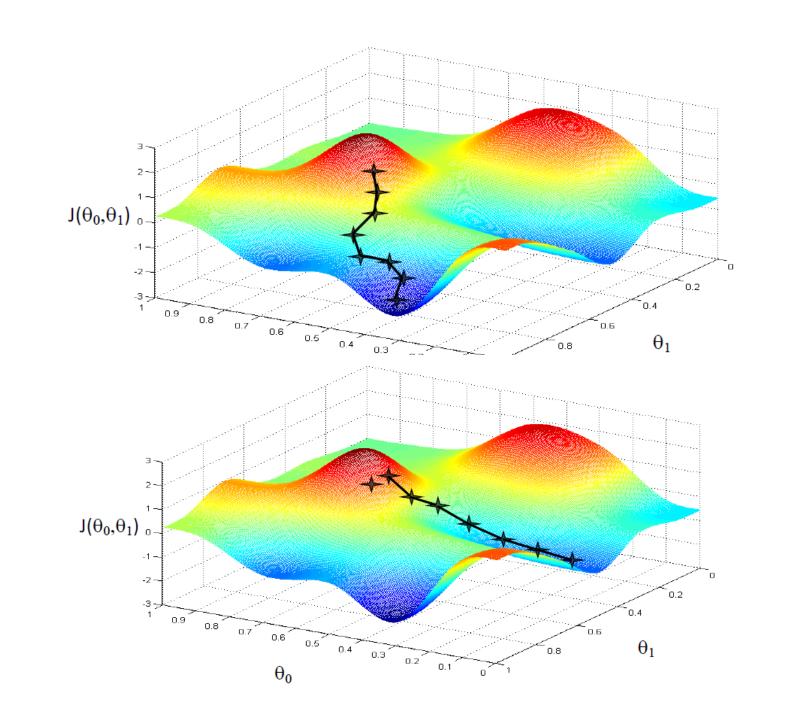
Complex loss functions are more difficult to optimize

GD Convergence Issues



- Local minimum: Gradient descent stops
- Plateau: Almost flat region where slope is small

Solution: start from multiple random locations



Simple Linear Regression

- Dataset $x_i \in R$, $y_i \in R$, $h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{N} \sum_{i=1}^{n} (\theta_0 + \theta_1 x_i y_i)^2$ MSE / Loss
- Solution of min loss

GD for Simple Linear Regression

- Initialize heta

Repeat until convergence
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

•
$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta_0 + \theta_1 x_i - y_i)^2$$

•
$$\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{N} \sum_{i=1}^{N} (\theta_0 + \theta_1 x_i - y_i) = \frac{2}{N} \sum_{i=1}^{N} (h_\theta(x_i) - y_i)$$

•
$$\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{N} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_i$$

Batch: Update of each parameter component depends on all training data

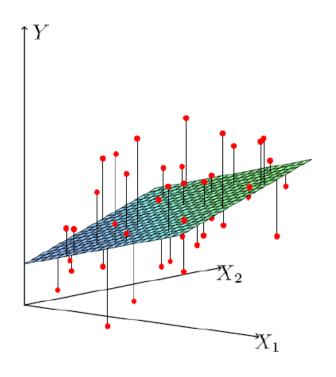
Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$

• MSE =
$$\frac{1}{N}\sum (\theta^T x_i - y_i)^2$$
 Loss / cost

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

MSE is a strictly convex function and has unique minimum



GD for Multiple Linear Regression

- Initialize heta

• Repeat until convergence
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\pmb{\theta})$$

simultaneous update for j = 0 ... d

•
$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\sum_{k} \theta_{k} x_{ik} - y_{i})^{2}$$
•
$$\frac{\partial J(\theta)}{\partial \theta_{j}} = \frac{2}{N} \sum_{i=1}^{N} (\sum_{k} \theta_{k} x_{ik} - y_{i}) \frac{\partial (\sum_{k} \theta_{k} x_{ik} - y_{i})}{\partial \theta_{j}}$$

$$= \frac{2}{N} \sum_{i=1}^{N} (h_{\theta}(x_{i}) - y_{i}) x_{ij}$$

GD for Linear Regression

• Initialize θ

$$||\theta_{new} - \theta_{old}|| < \epsilon$$
 or

Repeat until convergence iterations == MAX_ITER

$$\theta_j \leftarrow \theta_j - \alpha \frac{2}{N} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_{ij}$$
 simultaneous update for j = 0 ... d

• Assume convergence when $\|oldsymbol{ heta}_{new} - oldsymbol{ heta}_{old}\|_2 < \epsilon$

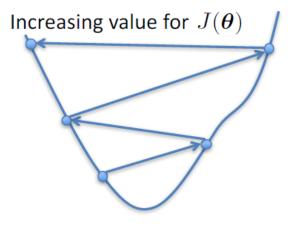
$$\| m{v} \|_2 = \sqrt{\sum_i v_i^2} = \sqrt{v_1^2 + v_2^2 + \ldots + v_{|v|}^2}$$

Can also bound number of iterations

Choosing learning rate

α too small

α too large

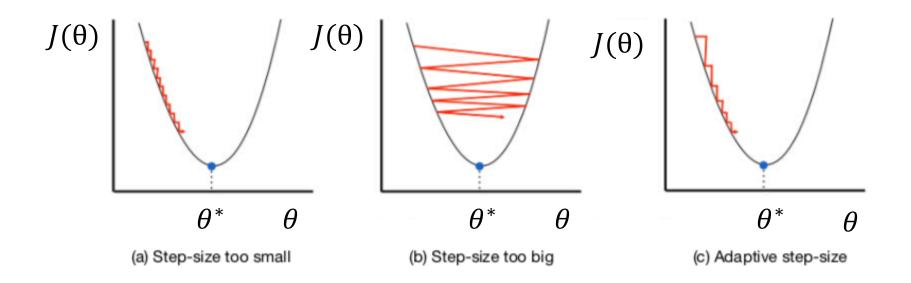


- May overshoot the minimum
- May fail to converge
- May even diverge

To see if gradient descent is working, print out $J(\theta)$ each iteration

- The value should decrease at each iteration
- If it doesn't, adjust α

Adaptive step size



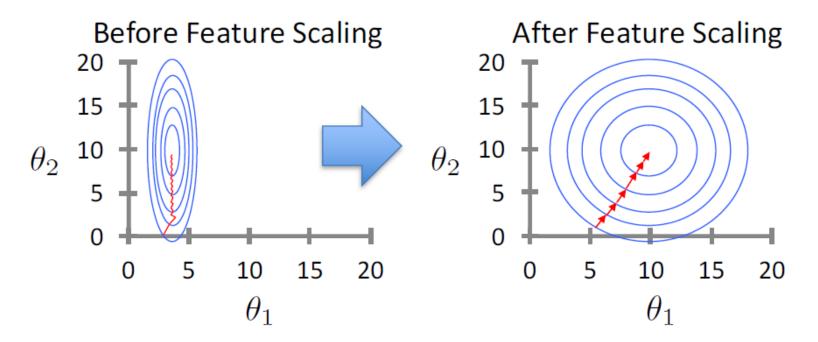
- Start with large step size and reduce over time, adaptively
- Measure how objective decreases

Gradient Descent with Line Search

- Input: α_{max} max. learning rate $\tau \in [0.5, 0.9]$, ϵ (tolerance), T(backtrack)
- Initialize θ with random value
- $\alpha \leftarrow \alpha_{max}$ // Set at maximum learning rate
- Repeat until convergence
 - $-\theta_{try} \leftarrow \theta$
 - Repeat max T times // Maximum number backtrack
 - $\qquad \theta_j^{\text{try}} \leftarrow \theta_j \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) \text{ for all } j$
 - If $J(\theta) J(\theta_{try}) > \epsilon$: then $\theta \leftarrow \theta_{try}$; break // Improved objective
 - Else $\alpha \leftarrow \tau \alpha$ (reduce step size). // Backtrack to smaller rate
 - If T times is reached, break and start over

Feature Scaling

Idea: Ensure that feature have similar scales



Makes gradient descent converge much faster

Gradient Descent in Practice

- Asymptotic complexity
 - -O(NTd), N is size of training data, d is feature dimension, and T is number of iterations
- Most popular optimization algorithm in use today
- At the basis of training
 - Linear Regression
 - Logistic regression
 - SVM
 - Neural networks and Deep learning
 - Stochastic Gradient Descent variants

Gradient Descent vs Closed Form

Gradient Descent

- Initialize θ
- · Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for i = 0 ... d

Closed form

$$\boldsymbol{\theta} = (\boldsymbol{X}^{\intercal} \boldsymbol{X})^{-1} \boldsymbol{X}^{\intercal} \boldsymbol{y}$$

- Gradient Descent
- + Linear increase in d and N
- + Generally applicable
- Need to choose α and stopping conditions
- Might get stuck in local optima

- Closed Form
- + No parameter tuning
- + Gives the global optimum
- Not generally applicable
- Slow computation: $O(d^3)$

Issues with Gradient Descent

- Might get stuck in local optimum and not converge to global optimum
 - Restart from multiple initial points
- Only works with differentiable loss functions
- Small or large gradients
 - Feature scaling helps
- Tune learning rate
 - Can use line search for determining optimal learning rate

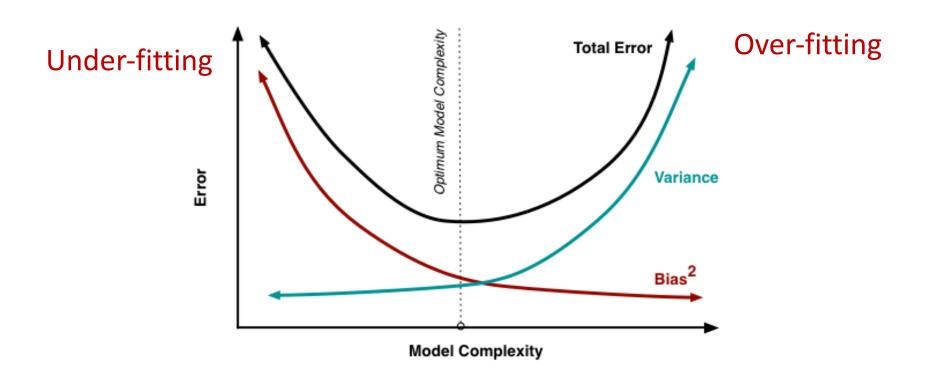
Review Gradient Descent

- Gradient descent is an efficient algorithm for optimization and training ML models
 - The most widely used algorithm in ML!
 - Much faster than using closed-form solution for linear regression
 - Main issues with Gradient Descent is convergence and getting stuck in local optima (for neural networks)
- Gradient descent is guaranteed to converge to optimum for strictly convex functions if run long enough

Outline

- Brief review
- Gradient descent
 - Batch algorithm
 - Line search optimization
- Gradient descent for linear regression
- Regularization
 - Ridge and Lasso regression
 - Gradient descent for ridge regression

Bias-Variance Tradeoff



- Bias = Difference between estimated and true models
- Variance = Model difference on different training sets
 MSE is proportional to Bias + Variance

Regularization

- A method for automatically controlling the complexity of the learned hypothesis
- Idea: penalize for large values of θ_i
 - Can incorporate into the cost function
 - Works well when we have a lot of features, each that contributes a bit to predicting the label
- Can also address overfitting by eliminating features (either manually or via model selection)

Reduce model complexity
Reduce model variance

Ridge regression

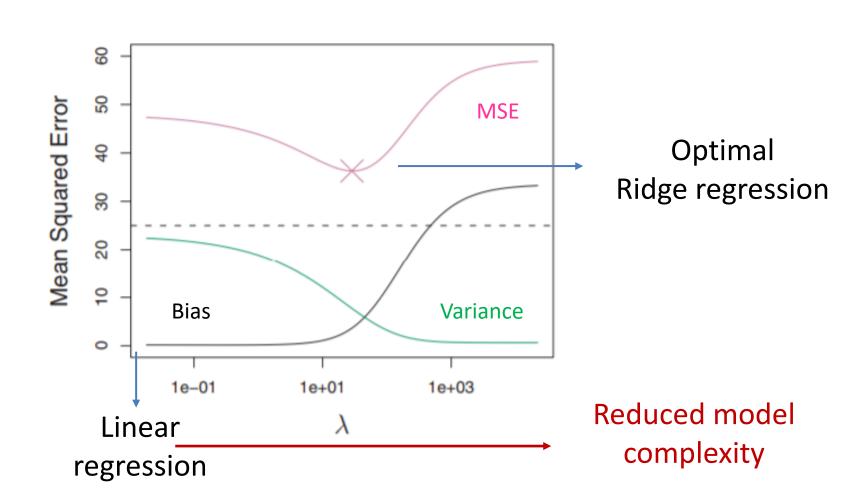
Linear regression objective function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$

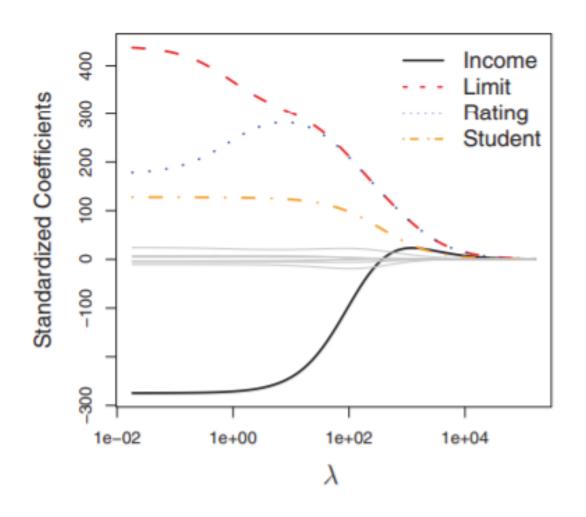
$$\text{model fit to data} \qquad \text{regularization}$$

- λ is the regularization parameter ($\lambda \geq 0$)
- No regularization on θ_0 !
 - If $\lambda = 0$, we train linear regression
 - If λ is large, the coefficients will shrink close to 0

Bias-Variance Tradeoff



Coefficient shrinkage



Predict credit card balance

GD for Ridge Regression

Min MSE

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_i^2$$

Gradient update: $\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)$

$$\theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_{ij} - \alpha \lambda \theta_j$$

Regularization

$$\theta_j \leftarrow \theta_j (1 - \alpha \lambda) - \alpha \sum_{i=1}^N (h_{\theta}(x_i) - y_i) x_{ij}$$

Review

- Gradient descent is a general optimization algorithm that can be applied in training
 - Minimize loss function (error metric)
- Gradient descent converges to local minima
- Requires selection of learning rate
- Bias-Variance tradeoff shows that both bias and variance need to be minimized
 - Regularization is a method to reduce model complexity and avoid overfitting
 - Ridge and Lasso regularization can be added to any loss function
 - Regularized model trained with Gradient Descent

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!