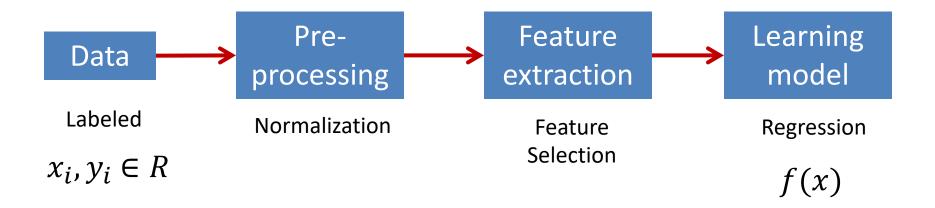
DS 5220

Supervised Machine Learning and Learning Theory

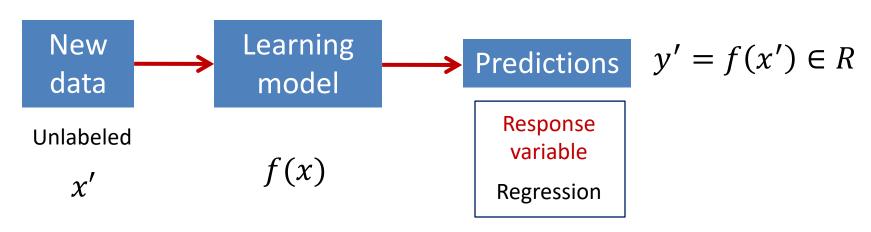
Alina Oprea
Associate Professor, CCIS
Northeastern University

September 16 2019

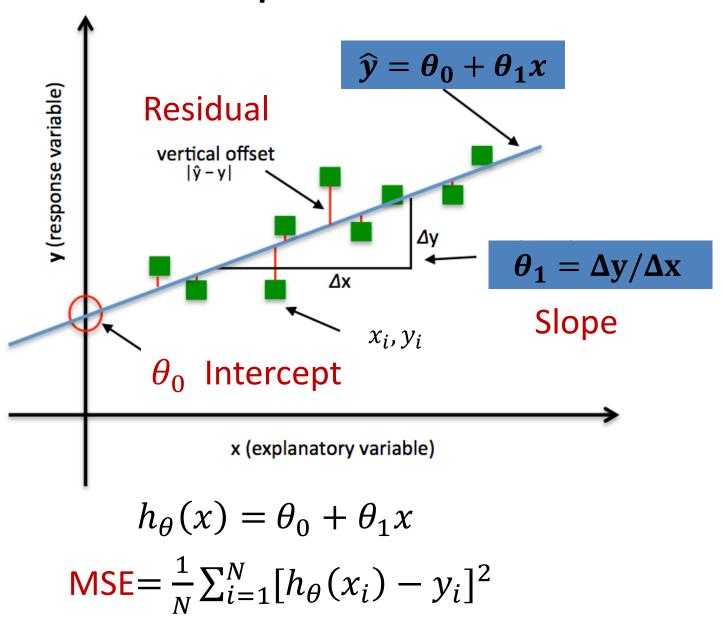
Logistics


- HW1 is out, due date is Sept. 23 at midnight
- HW is posted on Piazza
- Submission on Gradescope single PDF
 - Include response to math questions
 - Include results for coding questions
 - Submit zip file for code in Google form
- New resources posted on Piazza
- Lecture on Wed, Sept. 18 taught by Virgil Pavlu

Outline

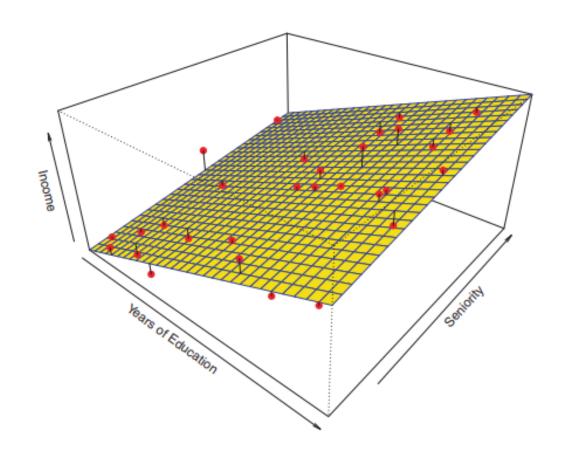

- Multiple linear regression
 - Optimal closed-form solution
- Lab linear regression
- Gradient descent
 - Batch algorithm
 - Algorithm for linear regression
 - Line search

Supervised Learning: Regression


Training

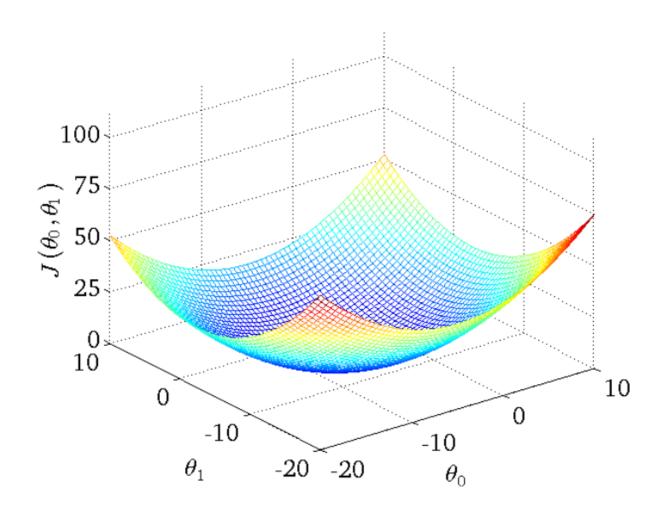
Testing

Interpretation


Review linear regression

- Simple linear regression: one dimension
- Multiple linear regression: multiple dimensions
- Minimize MSE is equivalent to MLE estimator
 - MSE: average of squared residuals
- Can derive closed-form solution for simple LR

$$-\theta_0 = \bar{y} - \theta_1 \bar{x}$$


$$-\theta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

Multiple Linear Regression

- Linear Regression with 2 predictors
- Dataset: $x_i \in R^d$, $y_i \in R$

MSE function

Convex function implies unique minimum

Vector Norms

Vector norms: A norm of a vector ||x|| is informally a measure of the "length" of the vector.

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Common norms: L₁, L₂ (Euclidean)

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

 $-L_{\infty}$

$$||x||_{\infty} = \max_i |x_i|$$

Vector products

We will use lower case letters for vectors The elements are referred by x_i .

Vector dot (inner) product:

$$x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ x_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

Vector outer product:

$$xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}y_{1} & x_{m}y_{2} & \cdots & x_{m}y_{n} \end{bmatrix}$$

Hypothesis Multiple LR

Linear Model

Consider our model:

$$h(\boldsymbol{x}) = \sum_{j=0}^{d} \theta_j x_j$$

Let

• Can write the model in vectorized form as $h(oldsymbol{x}) = oldsymbol{ heta}^\intercal oldsymbol{x}$

Vector inner product

Training data

- Total number of training example: N
- Dimension of training data point (number of features): d
- Dimension of matrix: Nx(d+1)

Use Vectorization

Consider our model for n instances:

$$h(x_i) = \sum_{j=0}^d \theta_j x_{ij} = \theta^T x_i$$

• Let
$$\theta_0 = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \quad X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{i1} & \dots & x_{id} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & \dots & x_{Nd} \end{bmatrix} \quad \text{Training data}$$

$$\mathbb{R}^{(d+1)\times 1} \quad \mathbb{R}^{n\times (d+1)}$$

• Can write the model in vectorized form as $h_{m{ heta}}(m{x}) = m{X}m{ heta}$

Model prediction vector \hat{y}

Loss function MSE

For the linear regression cost function:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} [\widehat{y}_i - y_i]^2$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_N \end{bmatrix} = \frac{1}{N} ||\hat{y} - y||^2$$
$$= \frac{1}{N} ||X\theta - y||^2$$

$$=\frac{1}{N}\left||\hat{y}-y|\right|^2$$

$$= \frac{1}{N} \left| |X\theta - y| \right|^2$$

$$\hat{y} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \vdots \\ \hat{y}_N \end{bmatrix}$$

Matrix and vector gradients

If $y = f(x), y \in R$ scalar, $x \in R^n$ vector

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \dots & \frac{\partial y}{\partial x_n} \end{bmatrix}$$

Vector gradient (row vector)

If
$$y = f(x), y \in \mathbb{R}^m, x \in \mathbb{R}^n$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

Jacobian matrix (Matrix gradient)

Properties

- If w, x are $(d \times 1)$ vectors, $\frac{\partial w^T x}{\partial x} = w^T$
- If A: $(n \times d) x$: $(d \times 1)$, $\frac{\partial Ax}{\partial x} = A$

- If A: $(d \times d) x$: $(d \times 1)$, $\frac{\partial x^T A x}{\partial x} = (A + A^T) x$
- If A symmetric: $\frac{\partial x^T A x}{\partial x} = 2Ax$
- If x: $(d \times 1)$, $\frac{\partial ||x||^2}{\partial x} = 2x^T$

Min loss function

– Notice that the solution is when $\frac{\partial}{\partial \boldsymbol{\theta}}J(\boldsymbol{\theta})=0$

$$J(\theta) = \frac{1}{N} \left| |X\theta - y| \right|^2$$

Using chain rule

$$f(\theta) = h(g(\theta)), \frac{\partial f(\theta)}{\partial \theta} = \frac{\partial h(g(\theta))}{\partial \theta} \frac{\partial g(\theta)}{\partial \theta}$$
$$h(x) = ||x||^2, g(\theta) = X\theta - y$$
$$\frac{\partial J(\theta)}{\partial \theta} = \frac{2}{N} [(X\theta - y)^T X] = 0 \Rightarrow X^T (X\theta - y) = 0$$
$$(X^T X)\theta = X^T y$$

Closed Form Solution:

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

Vectorization

- Two options for operations on training data
 - Matrix operations
 - For loops to update individual entries
- Most software packages are highly optimized for matrix operations
 - Python numpy
 - Preferred method!

Matrix operations are much faster than loops!

Closed-form solution

• Can obtain θ by simply plugging X and y into

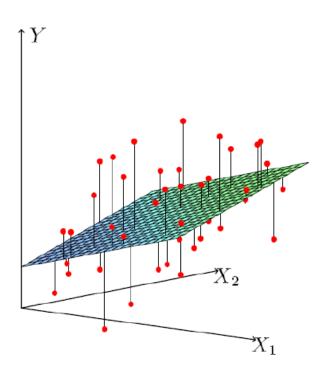
$$\boldsymbol{\theta} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$$

$$X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{i1} & \dots & x_{id} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & \dots & x_{Nd} \end{bmatrix} \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_N \end{bmatrix}$$

- If $X^{T}X$ is not invertible (i.e., singular), may need to:
 - Use pseudo-inverse instead of the inverse

$$AGA = A$$


- Remove redundant (not linearly independent) features
- Remove extra features to ensure that $d \le n$

Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$

• MSE =
$$\frac{1}{N}\sum (\theta^T x_i - y_i)^2$$
 Loss / cost

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

Practical issues: Feature Standardization

- Rescales features to have zero mean and unit variance
 - Let μ_j be the mean of feature j: $\mu_j = \frac{1}{n} \sum_{i=1}^n x_j^{(i)}$
 - Replace each value with:

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{s_j} \qquad \text{for } j = 1...d$$
 (not x_0 !)

• s_i is the standard deviation of feature j

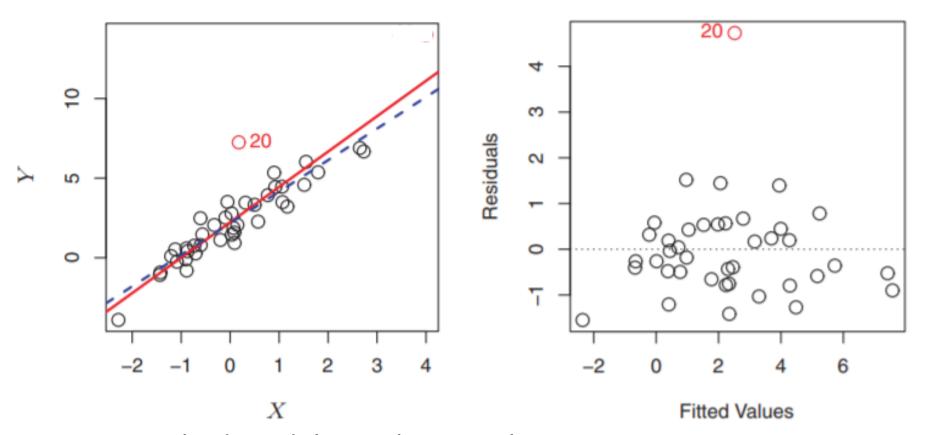
- Must apply the same transformation to instances for both training and prediction
- Mean 0 and Standard Deviation 1

Other feature normalization

Min-Max rescaling

$$-x_{ij} \leftarrow \frac{x_{ij} - min_j}{max_j - min_j} \in [0,1]$$

- $-min_j$ and max_j : min and max value of feature j
- Mean normalization


$$-x_{ij} \leftarrow \frac{x_{ij} - \mu_j}{max_j - min_j}$$

Mean 0

Feature standardization/normalization

- Goal is to have individual features on the same scale
- Is a pre-processing step in most learning algorithms
- Necessary for linear models and Gradient Descent
- Different options:
 - Feature standardization
 - Feature min-max rescaling
 - Mean normalization

Practical issues: Outliers

- Dashed model is without outlier point
- Linear regression is not resilient to outliers!
- Outliers can be eliminated based on residual value
 - Use different loss functions (Huber loss)

Categorical variables

- Predict credit card balance
 - Age
 - Income
 - Number of cards
 - Credit limit
 - Credit rating
- Categorical variables
 - Student (Yes/No)
 - State (50 different levels)

Indicator Variables

- One-hot encoding
- Binary (two-level) variable
 - Add new feature $x_j = 1$ if student and 0 otherwise
- Multi-level variable
 - State: 50 values
 - $-x_{MA} = 1$ if State = MA and 0, otherwise
 - $-x_{NY} = 1$ if State = NY and 0, otherwise
 - **—** ...
 - How many indicator variables are needed?
- Disadvantages: data becomes too sparse for large number of levels
 - Will discuss feature selection later in class

Lab example

```
us_youtube = pd.read_csv('us_youtube_videos.csv')
```

us_youtube.head(15)

	views	likes	dislikes	comment_count
0	748374	57527	2966	15954
1	2418783	97185	6146	12703
2	3191434	146033	5339	8181
3	343168	10172	666	2146
4	2095731	132235	1989	17518
5	119180	9763	511	1434
6	2103417	15993	2445	1970
7	817732	23663	778	3432
8	826059	3543	119	340
9	256426	12654	1363	2368
10	81377	655	25	177
11	104578	1576	303	1279
12	687582	114188	1333	8371
13	544770	7848	1171	3981
14	207532	7473	246	2120

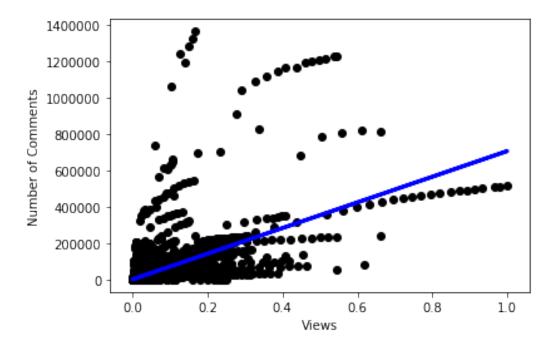
Lab example

```
us_youtube = pd.read_csv('us_youtube_videos.csv')

us_youtube.head(15)
```

Features min-max normalized

0 0.003321 0.010247 0.001771 1 15954 1 0.010738 0.017312 0.003671 0 12703 2 0.014168 0.026013 0.003189 1 8181 3 0.001521 0.001812 0.000398 0 2146 4 0.009303 0.023555 0.001188 1 17518 5 0.000527 0.001739 0.000305 1 1434 6 0.009337 0.002849 0.001460 0 1970 7 0.003629 0.004215 0.000465 1 3432 8 0.003665 0.000631 0.000071 1 340 9 0.001136 0.000254 0.000814 1 2368 10 0.000359 0.000117 0.000181 0 177 11 0.000462 0.000281 0.000181 0 1 8371 12 0.003051 0.020340 0.000699 1 3981 14 0.000919 0.001333 0.000147 1 21		views	likes	dislikes	published_in_morning	comment_count
2 0.014168 0.026013 0.003189 1 8181 3 0.001521 0.001812 0.000398 0 2146 4 0.009303 0.023555 0.001188 1 17518 5 0.000527 0.001739 0.000305 1 1434 6 0.009337 0.002849 0.001460 0 1970 7 0.003629 0.004215 0.000465 1 3432 8 0.003665 0.000631 0.000071 1 340 9 0.001136 0.002254 0.000814 1 2368 10 0.000359 0.000117 0.000015 0 177 11 0.000462 0.000281 0.000181 0 1279 12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	0	0.003321	0.010247	0.001771	1	15954
3 0.001521 0.001812 0.000398 0 2146 4 0.009303 0.023555 0.001188 1 17518 5 0.000527 0.001739 0.000305 1 1434 6 0.009337 0.002849 0.001460 0 1970 7 0.003629 0.004215 0.000465 1 3432 8 0.003665 0.000631 0.000071 1 340 9 0.001136 0.002254 0.000814 1 2368 10 0.000359 0.000117 0.000015 0 177 11 0.000462 0.000281 0.000181 0 1279 12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	1	0.010738	0.017312	0.003671	0	12703
4 0.009303 0.023555 0.001188 1 17518 5 0.000527 0.001739 0.000305 1 1434 6 0.009337 0.002849 0.001460 0 1970 7 0.003629 0.004215 0.000465 1 3432 8 0.003665 0.000631 0.000071 1 340 9 0.001136 0.002254 0.000814 1 2368 10 0.000359 0.000117 0.000015 0 177 11 0.000462 0.000281 0.000181 0 1279 12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	2	0.014168	0.026013	0.003189	1	8181
5 0.000527 0.001739 0.000305 1 1434 6 0.009337 0.002849 0.001460 0 1970 7 0.003629 0.004215 0.000465 1 3432 8 0.003665 0.000631 0.000071 1 340 9 0.001136 0.002254 0.000814 1 2368 10 0.000359 0.000117 0.000015 0 177 11 0.000462 0.000281 0.000181 0 1279 12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	3	0.001521	0.001812	0.000398	0	2146
6 0.009337 0.002849 0.001460 0 1970 7 0.003629 0.004215 0.000465 1 3432 8 0.003665 0.000631 0.000071 1 340 9 0.001136 0.002254 0.000814 1 2368 10 0.000359 0.000117 0.000015 0 177 11 0.000462 0.000281 0.000181 0 1279 12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	4	0.009303	0.023555	0.001188	1	17518
7 0.003629 0.004215 0.000465 1 3432 8 0.003665 0.000631 0.000071 1 340 9 0.001136 0.002254 0.000814 1 2368 10 0.000359 0.000117 0.000015 0 177 11 0.000462 0.000281 0.000181 0 1279 12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	5	0.000527	0.001739	0.000305	1	1434
8 0.003665 0.000631 0.000071 1 340 9 0.001136 0.002254 0.000814 1 2368 10 0.000359 0.000117 0.000015 0 177 11 0.000462 0.000281 0.000181 0 1279 12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	6	0.009337	0.002849	0.001460	0	1970
9 0.001136 0.002254 0.000814 1 2368 10 0.000359 0.000117 0.000015 0 177 11 0.000462 0.000281 0.000181 0 1279 12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	7	0.003629	0.004215	0.000465	1	3432
10 0.000359 0.000117 0.000015 0 177 11 0.000462 0.000281 0.000181 0 1279 12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	8	0.003665	0.000631	0.000071	1	340
11 0.000462 0.000281 0.000181 0 1279 12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	9	0.001136	0.002254	0.000814	1	2368
12 0.003051 0.020340 0.000796 1 8371 13 0.002416 0.001398 0.000699 1 3981	10	0.000359	0.000117	0.000015	0	177
13 0.002416 0.001398 0.000699 1 3981	11	0.000462	0.000281	0.000181	0	1279
STATES AND	12	0.003051	0.020340	0.000796	1	8371
14 0.000919 0.001331 0.000147 1 2120	13	0.002416	0.001398	0.000699	1	3981
	14	0.000919	0.001331	0.000147	1	2120


Simple LR

```
views_comments = us_youtube[['views', 'comment_count']]

reg = linear_model.LinearRegression()
reg.fit(views_comments.drop(columns='comment_count'), views_comments['comment_count'])

comments_pred = reg.predict(views_comments.drop(columns='comment_count'))

plt.scatter(views_comments['views'], views_comments['comment_count'], color='black')
plt.plot(views_comments['views'], comments_pred, color='blue', linewidth=3)
plt.xlabel('Views')
plt.ylabel('Number of Comments')
plt.show()
```


Simple LR

```
print("views coef: {}".format(reg.coef_[0]))

views coef: 704128.4873046515

mse_single = mean_squared_error(views_comments['comment_count'], comments_pred)
print("MSE: {}".format(mse_single))
print("RSE: {}".format(mse_single ** 0.5))

MSE: 866584512.2544774
RSE: 29437.807531378374

Without scaling response variable
```

views coef: 0.5171407389243756

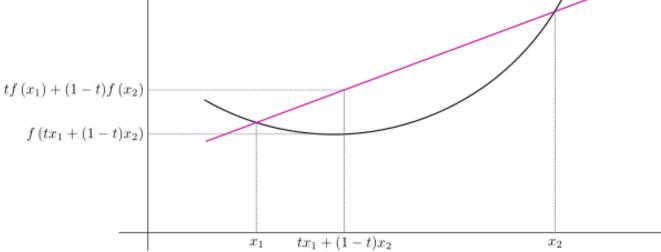
MSE: 0.0004674386251650002 RSE: 0.021620328979111307 With scaling response variable

Residual Standard Error (RSE) $RSE = \sqrt{MSE}$

Multiple LR

```
reg multi = linear model.LinearRegression()
reg multi.fit(us youtube.drop(columns='comment count'), us youtube['comment count'])
LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=False)
comments pred multi = reg multi.predict(us youtube.drop(columns='comment count'))
feature names = us youtube.drop(columns='comment count').columns
for i in range(len(reg multi.coef )):
   print("{} coef: {}".format(feature names[i], reg multi.coef [i]))
views coef: -441184.8341255368
likes coef: 845430.3290977236
                                                Without scaling response variable
dislikes coef: 1017058.2337598497
published in morning coef: -167.28387229563668
mse multi = mean squared error(us youtube['comment count'], comments pred multi)
print("MSE: {}".format(mse multi))
print("RSE: {}".format(mse multi ** 0.5))
```

MSE: 237564606.31275252 RSE: 15413.130970466465


views coef: -0.32402417347899976 likes coef: 0.6209185865668729 dislikes coef: 0.7469691342116144 published in morning coef: -0.0001228601127334361 MSE: 0.0001281431544094894 RSE: 0.011320033321924869

With scaling response variable Lower MSE/RSE with multiple features

How to optimize $J(\theta)$?

(Strictly) Convex functions

 $- \forall x_1, x_2 \in X, t \in [0,1], f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2)$

- Have single global minimum
- Condition for differentiable functions: f''(x) > 0

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!