DS 5220

Supervised Machine Learning and Learning Theory

Alina Oprea
Associate Professor, CCIS
Northeastern University

Outline

- Finish probability review
- Linear regression
 - MSE objective
- MLE for linear regression
 - Statistical interpretation
- Simple linear regression
 - Optimal closed-from solution
- Multiple linear regression
 - Optimal closed-form solution

Covariance

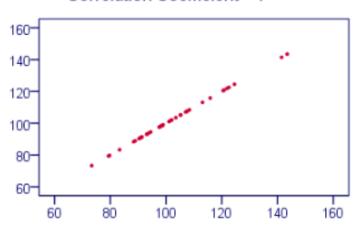
- X and Y are random variables
- Cov(X,Y) = E[(X E(X))(Y E(Y))]
- Properties
 - (i) Cov(X, Y) = Cov(Y, X)
 - (ii) Cov(X, X) = Var(X)
 - (iii) Cov(aX, Y) = a Cov(X, Y)

(iv)
$$\text{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \text{Cov}(X_{i}, Y_{j})$$

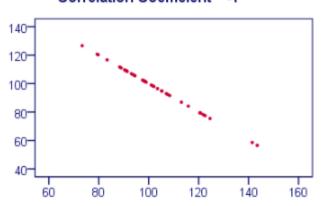
Pearson Correlation

$$\rho = \operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} \in [-1, 1]$$

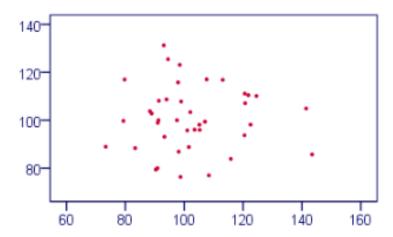
Correlation Coefficient = 1



Correlation Coefficient = -1



Correlation Coefficient = 0



Bivariate distributions

$$F_{X,Y}(x,y) = \mathrm{P}(X \leq x, Y \leq y)$$
 (Eq.1)

Joint CDF

$$F_X(x, y) = P(X \le x, Y \le y) = P[X \le x | Y = y |] P[y \le y]$$

$$f_{X,Y}(x,y)=rac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$
 (Eq.5)

Joint PDF

$$f_X(x) = \int_{\mathcal{Y}} f_{X,Y}(x,y) dy$$
 Marginal distributions $f_Y(x) = \int_{\mathcal{X}} f_{X,Y}(x,y) dx$

• $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$ are Normal

•
$$\mu = (E[X], E[Y]) = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}$$

mean vector

•
$$\Sigma = \begin{pmatrix} Var(X) & Cov(X,Y) \\ Cov(X,Y) & Var(Y) \end{pmatrix} = \begin{pmatrix} \sigma_X^2 & \rho & \sigma_X \sigma_Y \\ \rho & \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix}$$

covariance matrix

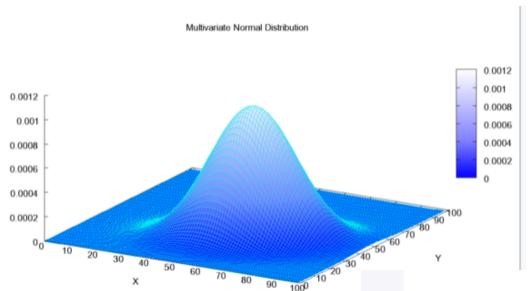
$$F_{X,Y}(x,y)=\mathrm{P}(X\leq x,Y\leq y)$$
 (Eq.1)

Joint CDF

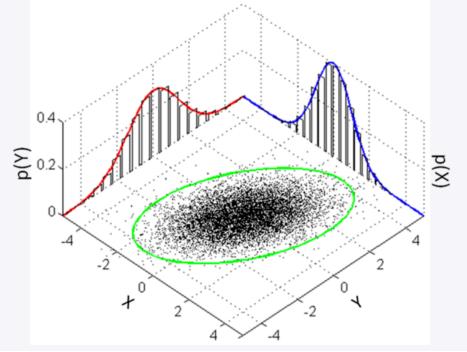
$$f_{X,Y}(x,y)=rac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$
 (Eq.5)

Joint PDF

$$f(z) = \frac{\exp(-\frac{1}{2}(z - \mu)^T \Sigma^{-1}(z - \mu))}{2\pi\sqrt{|\Sigma|}},$$
$$z = (x, y)$$



- Marginals of bivariate normal are normal
- Linear combinations of normal are normal



If X and Y have mean μ_X and μ_Y , general case is:

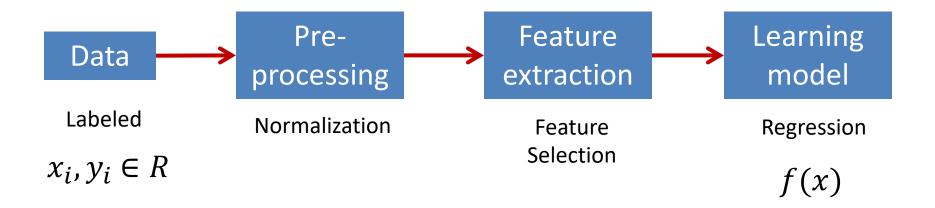
$$\begin{split} & f_{X,Y}(x,y) = \\ & = \frac{1}{2\pi\sigma_X\sigma_Y(1-\rho^2)^{1/2}} \exp\left[\frac{-1}{2(1-\rho^2)} \left(\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - 2\rho\frac{(x-\mu_X)}{\sigma_X}\frac{(y-\mu_Y)}{\sigma_Y}\right)\right] \end{split}$$

If X and Y are uncorrelated ($\rho = 0$), and centered with mean 0:

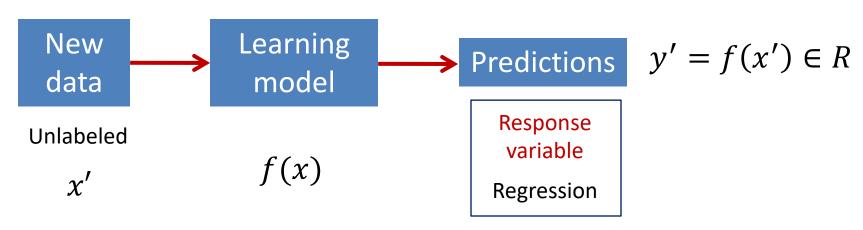
$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y}e^{-\frac{x^2}{2\sigma_X^2} - \frac{y^2}{2\sigma_Y^2}},$$

Supervised Learning: Regression

Training



Testing



Steps to Learning Process

- Define problem space
- Collect data
- Extract feature
- Pick a model (hypothesis)
- Develop a learning algorithm
 - Train and learn model parameters
- Make predictions on new data
 - Testing phase
- In practice, usually re-train when new data is available and use feedback from deployment

Linear regression

- One of the most widely used techniques
- Fundamental to many complex models
 - Generalized Linear Models
 - Logistic regression
 - Neural networks
 - Deep learning
- Easy to understand and interpret
- Efficient to solve in closed form
- Efficient practical algorithm (gradient descent)

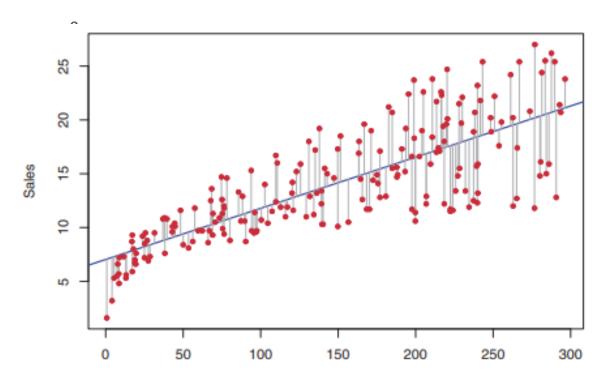
Linear regression

Given:

– Data $X = \{x_1, \dots x_N\}$, where $x_i \in \mathbb{R}^d$

Features

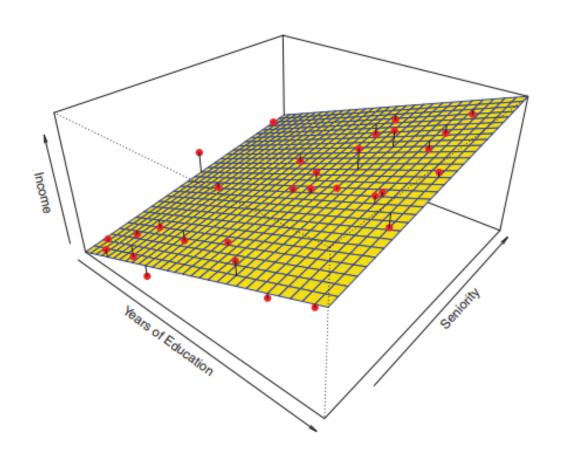
- Corresponding labels $Y = \{y_1, ..., y_N\}$, where $y_i \in R$



Response variables

Simple Linear Regression: 1 predictor

Income Prediction



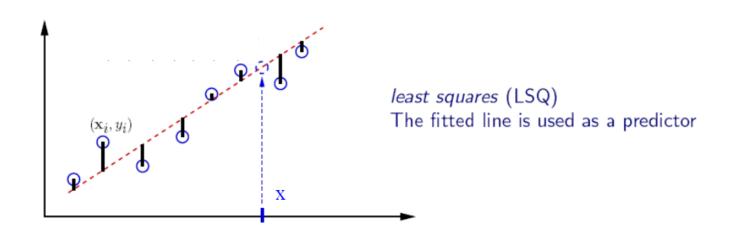
Linear Regression with 2 predictors Multiple Linear Regression

Hypothesis: linear model

• Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Simple linear regression Regression model is a line with 2 parameters: θ_0 , θ_1

Fit model by minimizing sum of squared errors



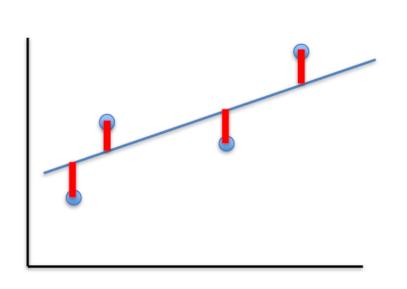
Least-Squares Linear Regression

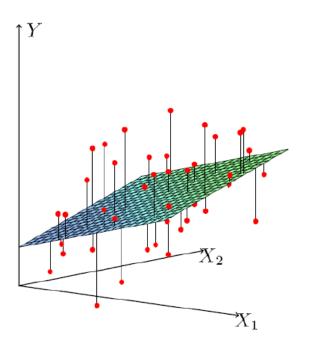
Cost Function

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

Mean Square Error (MSE)

• Fit by solving $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$





Terminology and Metrics

Residuals

- Difference between predicted values and actual values
- Predicted value for example i is: $\hat{y}_i = h_{\theta}(x_i)$

$$-R_i = |y_i - \widehat{y}_i| = |y_i - (\theta_0 + \theta_1 x_i)|$$

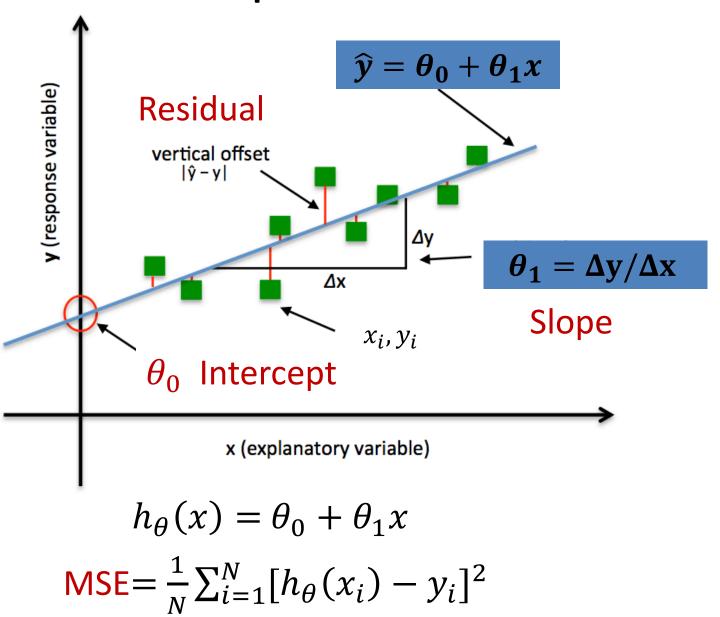
Residual Sum of Squares (RSS)

$$-RSS = \sum R_i^2 = \sum [y_i - (\theta_0 + \theta_1 x_i)]^2$$

Mean Square Error (MSE)

$$-MSE = \frac{1}{N} \sum R_i^2 = \frac{1}{N} \sum [y_i - (\theta_0 + \theta_1 x_i)]^2$$

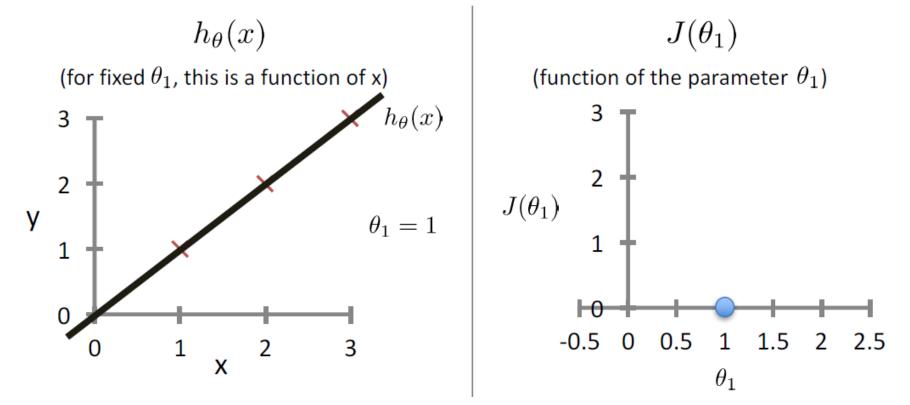
Interpretation



Intuition on MSE

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta} = [\theta_0, \theta_1]$

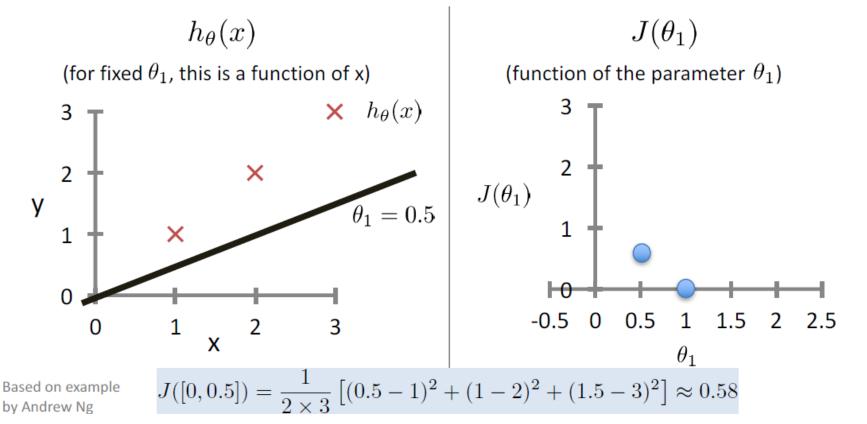


Fix $\theta_0 = 0$

Intuition on MSE

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

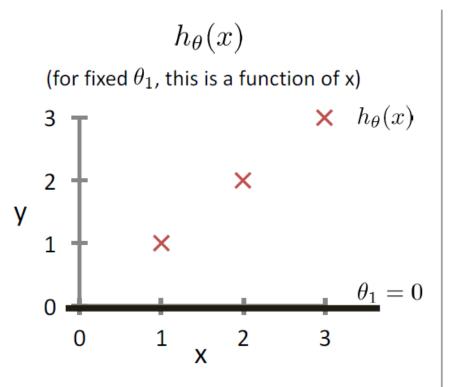
For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$



Intuition on MSE

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

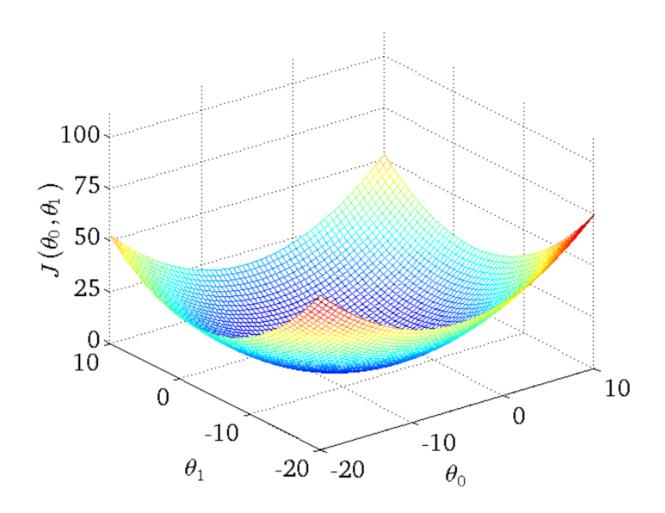
For insight on J(), let's assume $x \in \mathbb{K}$ so $\boldsymbol{\theta} = [\theta_0, \theta_1]$



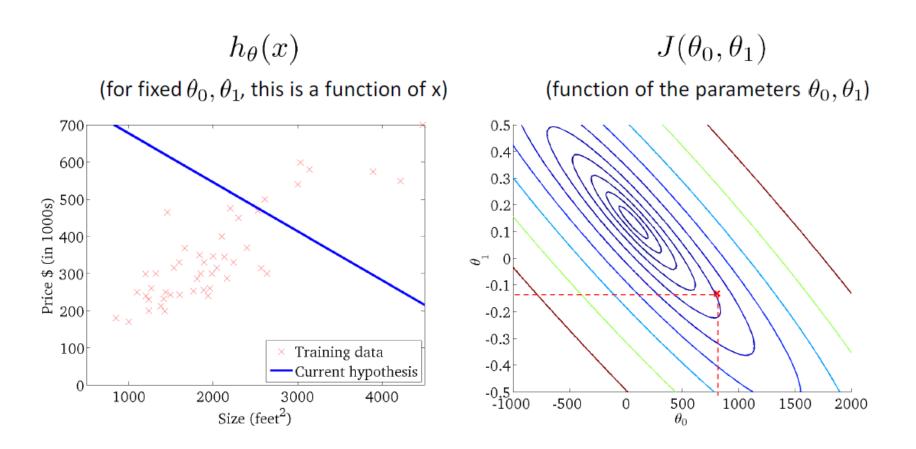
(function of the parameter θ_1) $J([0,0]) \approx 2.333$ $J(\theta_1)$ 1 $-0.5 \quad 0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5$ θ_1

 $J(\theta_1)$

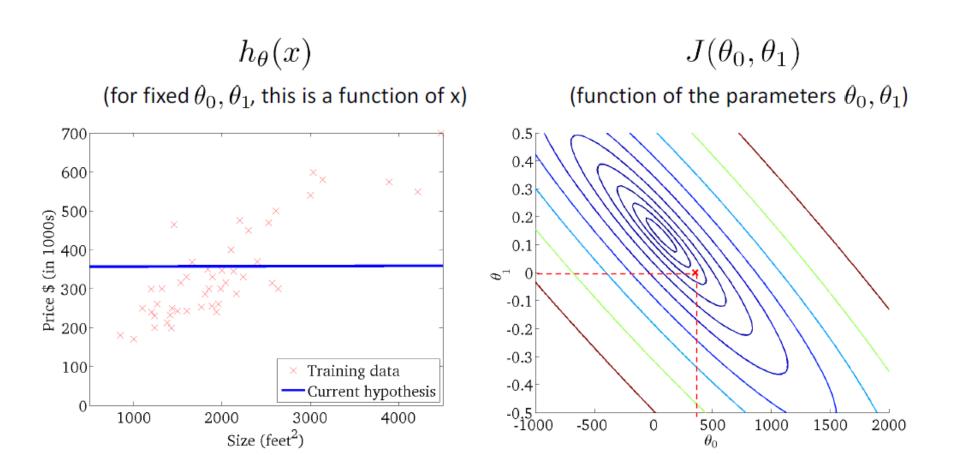
MSE function



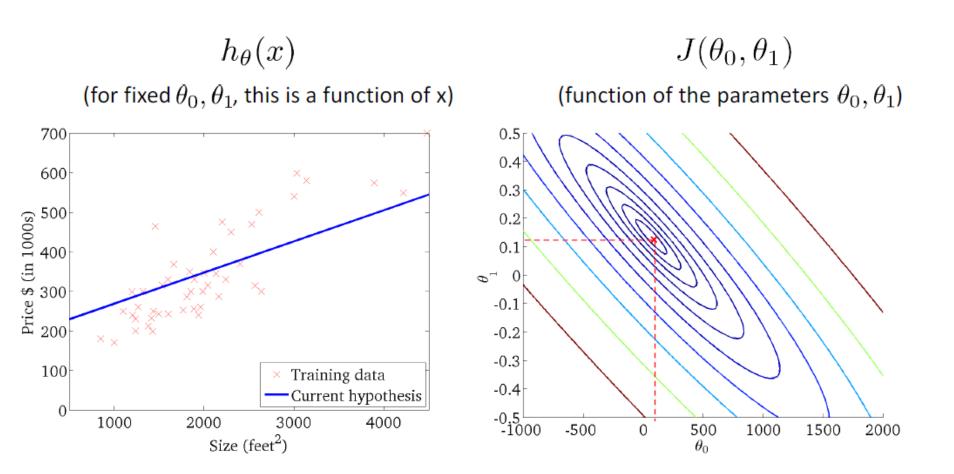
Relation between h and J



Relation between h and J



Relation between h and J



Find optimal model parameters θ to minimize MSE J

Statistical perspective

Response has linear dependence on input with Normal noise

$$-y_i = \theta_0 + \theta_1 x_i + \epsilon_i , \epsilon_i \in N(0, \sigma^2) \text{ noise}$$

$$-y_i|x_i \sim N(0,\sigma^2)$$

$$-f(y_i|x_i;\theta,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}[y_i - (\theta_0 + \theta_1 x_i)]^2} \text{ PDF}$$

- One training example
- Training dataset

$$-f(y_1,...,y_N|x_1,...,x_N;\theta,\sigma) = \prod_{i=1}^N f(y_i|x_i;\theta,\sigma)$$

Assume independence

Maximum Likelihood Estimation (MLE)

Given training data $X = \{x_1, ..., x_N\}$ with labels $Y = \{y_1, ..., y_N\}$

What is the likelihood of training data for parameter θ ?

Define likelihood function

$$Max_{\theta} L(\theta) = P[Y|X;\theta] = f(y_1, \dots, y_N | x_1, \dots, x_N; \theta)$$

Assumption: training points are independent!

$$L(\theta) = \prod_{i=1}^{N} P[y_i|x_i;\theta]$$

Log Likelihood

 Max likelihood is equivalent to maximizing log of likelihood

$$L(\theta) = \prod_{i=1}^{N} P[y_i | x_i, \theta]$$
$$\log L(\theta) = \sum_{i=1}^{n} \log P[y_i | x_i, \theta]$$

They both have the same maximum

MLE for Linear Regression

$$L(\theta) = \prod_{i=1}^{N} P[y_i|x_i;\theta] = \prod_{i=1}^{N} f(y_i|x_i;\theta,\sigma)$$

$$\log L(\theta) = -c \sum_{i=1}^{N} [y_i - (\theta_0 + \theta_1 x_i)]^2$$

Max likelihood θ is the same as Min MSE θ ! The MSE metric has statistical motivation

Solution for simple linear regression

- Dataset $x_i \in R$, $y_i \in R$, $h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta_0 + \theta_1 x_i y_i)^2$ MSE / Loss

$$\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{N} \sum_{i=1N} (\theta_0 + \theta_1 x_i - y_i) = 0$$

$$\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{N} \sum_{i=1}^{N} x_i (\theta_0 + \theta_1 x_i - y_i) = 0$$

Solution of min loss

$$-\theta_0 = \bar{y} - \theta_1 \bar{x}$$

$$-\theta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\bar{y} = \frac{\sum_{i=1}^{N} y_i}{N}$$

How Well Does the Model Fit?

- Correlation between feature and response
 - Pearson's correlation coefficient

$$\rho = Corr(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

- Measures linear dependence between X and Y
- Positive coefficient implies positive correlation
 - The closer to 1 the coefficient is, the stronger the correlation
- Negative coefficient implies negative correlation
 - The closer to -1 the coefficient is, the stronger the correlation

•
$$\theta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

• If $\sigma_X = \sigma_Y$, then $\theta_1 = \text{Corr}(X, Y)$

Regression vs Correlation

Correlation

 Find a numerical value expressing the relationship between variables

Regression

- Estimate values of response variable on the basis of the values of fixed variable.
- The slope of linear regression is related to correlation coefficient
- Regression scales to more than 2 variables, but correlation does not