DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor, CCIS
Northeastern University

December 2 2019

Logistics

- Final exam
 - Wed, Dec 4, 2:50-5pm, in class
 - Office hours: after class today, Tuesday 1-2pm
 - No office hours on Wed
- Final project
 - Presentations: Mon, Dec 9, 1-5pm, ISEC 655
 - 8 minutes per team
 - Final report due on Gradescope on Tue, Dec. 10
 - No late days for final report! Please submit on time

Final Exam Review

What we covered

Ensembles

- Bagging
- Random forests
- Boosting
- AdaBoost

Deep learning

- Feed-forward Neural Nets
- Convolutional Neural Nets
- Architectures
- Forward/back propagation

Linear classification

- Perceptron
- Logistic regression
- LDA
- Linear SVM

Non-linear classification

- kNN
- Decision trees
- Kernel SVM
- Naïve Bayes

- Metrics
- Cross-validation
- Regularization
- Feature selection
- Gradient Descent
- Density Estimation

Linear Regression

Linear algebra

Probability and statistics

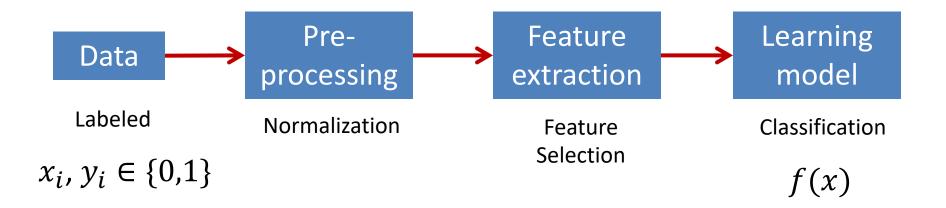
Terminology

- Hypothesis space $H = \{f: X \to Y\}$
- Training data $D = (x_i, y_i) \in X \times Y$
- Features: $x_i \in X$
- Labels / response variables $y_i \in Y$
 - Classification: discrete $y_i \in \{0,1\}$
 - Regression: $y_i \in R$
- Loss function: L(f, D)
 - Measures how well f fits training data
- Training algorithm: Find hypothesis $\hat{f}: X \to Y$

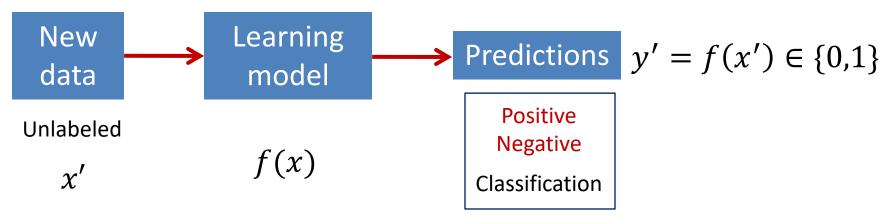
$$-\hat{f} = \underset{f \in H}{\operatorname{argmin}} L(f, D)$$

Supervised Learning: Classification

Training

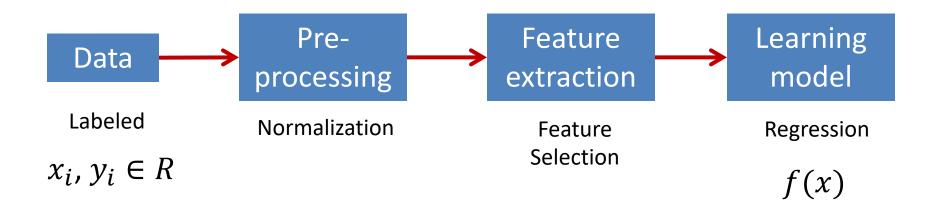


Testing

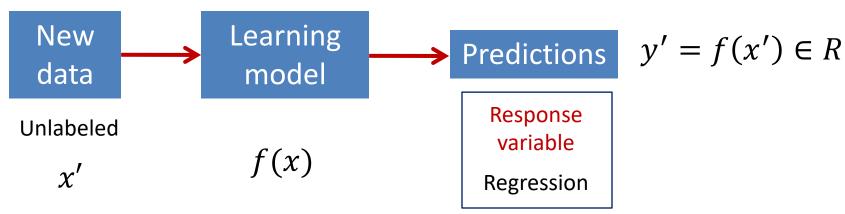


Supervised Learning: Regression

Training



Testing



Methods for Feature Selection

Wrappers

- Select subset of features that gives best prediction accuracy (using cross-validation)
- Model-specific

Filters

- Compute some statistical metrics (correlation coefficient, mutual information)
- Select features with statistics higher than threshold

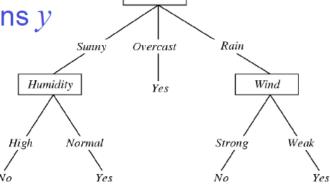
Embedded methods

- Feature selection done as part of training
- Example: Regularization (Lasso, L1 regularization)

Decision Tree Learning

Problem Setting:

- Set of possible instances X
 - each instance x in X is a feature vector
 - e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>
- Unknown target function f: X→Y
 - Y is discrete valued
- Set of function hypotheses $H = \{ h \mid h : X \rightarrow Y \}$
 - each hypothesis h is a decision tree
 - trees sorts x to leaf, which assigns y



Outlook

Slide by Tom Mitchell

Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

Regression Trees



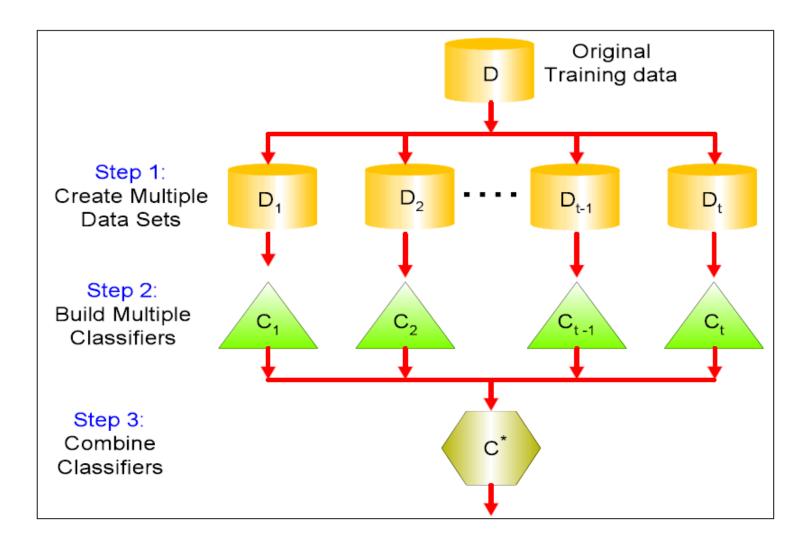
Predict c_1

Predict c_2

Decision trees topics

- Entropy, Conditional entropy
- Information gain
- How to train a decision tree
 - Recursive algorithm
 - Impurity metrics (Gini, information gain)
- How to evaluate a decision tree
- Strategies to prevent overfitting
 - Pruning

Ensembles



Bagging

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.

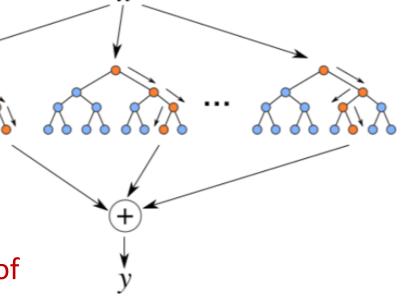
Bagging:

- Create k bootstrap samples $D_1 \dots D_k$.
- Train distinct classifier on each D_i .
- Classify new instance by majority vote / average.

Random Forests

- Construct decision trees on bootstrap replicas
 - Restrict the node decisions to a small subset of features picked randomly for each node
- Do not prune the trees
 - Estimate tree performance on out-of-bootstrap data
- Average the output of all trees (or choose mode decision)

Trees are de-correlated by choice of random subset of features



Overview of AdaBoost

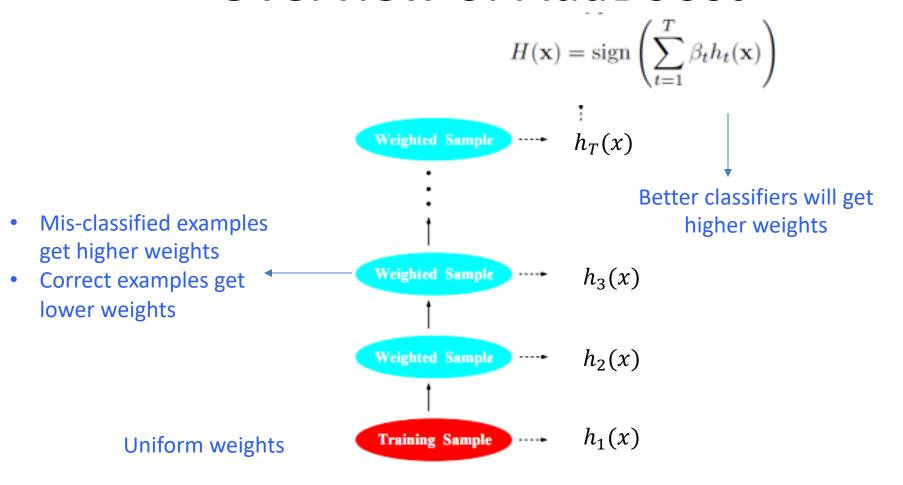


FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

AdaBoost

1: Initialize a vector of n uniform weights \mathbf{w}_1

2: **for** t = 1, ..., T

3: Train model h_t on X, y with weights \mathbf{w}_t

4: Compute the weighted training error of h_t

5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

6: Update all instance weights:

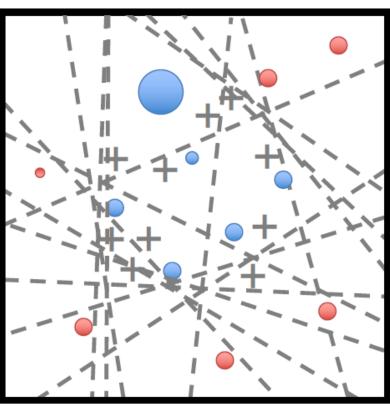
$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

7: Normalize \mathbf{w}_{t+1} to be a distribution

8: end for

9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



- Final model is a weighted combination of members
 - Each member weighted by its importance

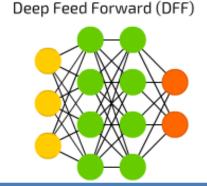
Ensemble Topics

- Bagging
 - Parallel training
 - Bootstrap samples
 - Out-of-bag (OOB) error
 - Random forest
- Boosting
 - Sequential training
 - Training with weights
 - AdaBoost

Neural Network Architectures

Feed-Forward Networks

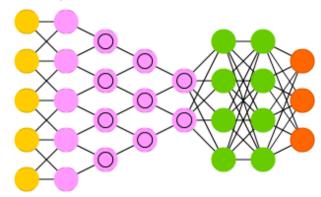
 Neurons from each layer connect to neurons from next layer



Convolutional Networks

- Includes convolution layer for feature reduction
- Learns hierarchical representations

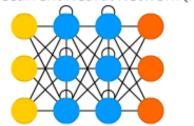
Deep Convolutional Network (DCN)



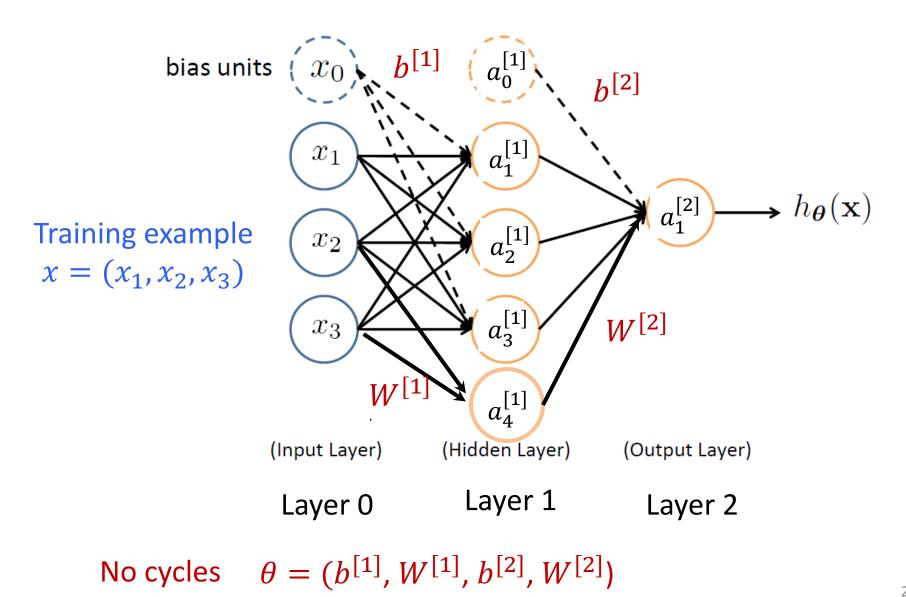
Recurrent Networks

- Keep hidden state
- Have cycles in computational graph

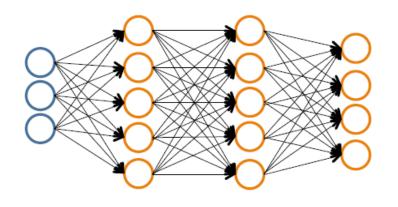
Recurrent Neural Network (RNN)



Feed-Forward Neural Network



Neural Network Classification



Binary classification

y = 0 or 1

1 output unit $(s_{L-1} = 1)$

Sigmoid

Given:

$$\begin{split} &\{(\mathbf{x}_1,y_1),\ (\mathbf{x}_2,y_2),\ ...,\ (\mathbf{x}_n,y_n)\}\\ &\mathbf{s} \in \mathbb{N}^{+L} \text{ contains \# nodes at each layer}\\ &-\ s_0 = d \text{ (\# features)} \end{split}$$

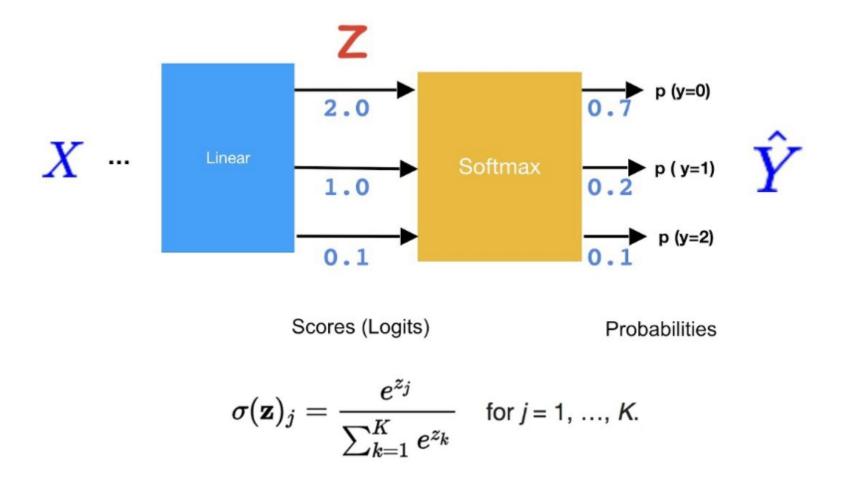
Multi-class classification (K classes)

$$\mathbf{y} \in \mathbb{R}^K$$
 e.g. $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

$$K$$
 output units $(s_{L-1} = K)$

Softmax

Softmax classifier



- Predict the class with highest probability
- Generalization of sigmoid/logistic regression to multi-class

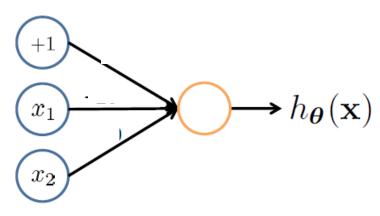
Feed-Forward Neural Networks Topics

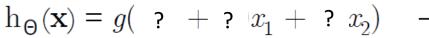
- Forward propagation
 - Linear operations and activations
- Activation functions
 - Examples, non-linearity
- Design networks for simple operations
- Estimate number of parameters
 - Count both weights and biases
- Activations for binary / multi-class classification
- Regularization (dropout and weight decay)

Representing Boolean Functions

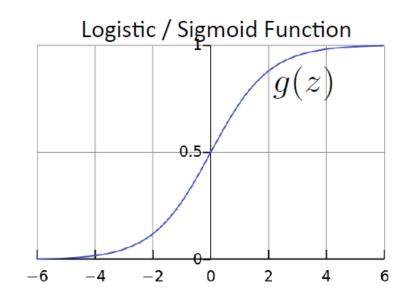
Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$
$$y = x_1 \text{ AND } x_2$$



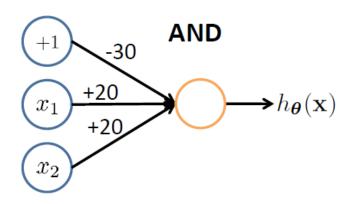


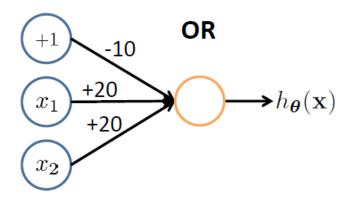
Logistic unit

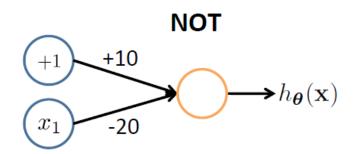


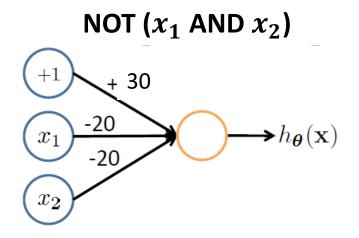
x_1	x_2	$h_{\Theta}(\mathbf{x})$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Representing Boolean Functions







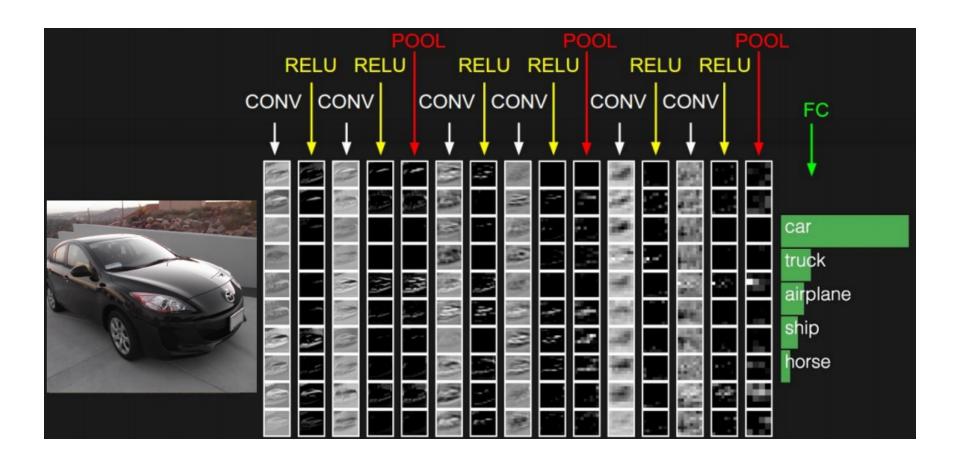


XOR with 1 Hidden layer

$$h_1 = x_1 \text{ OR } x_2$$
 $b=-10$
 $color (20x_1 + 20x_2 - 10)$
 $color (20x_1 + 20x_2 - 10)$
 $color (20x_1 + 20x_2 - 10)$
 $color (20x_1 + 20x_2 - 30)$
 $color (20x_1 + 20x_2 - 30)$
 $color (20x_1 - 20x_2 + 30)$

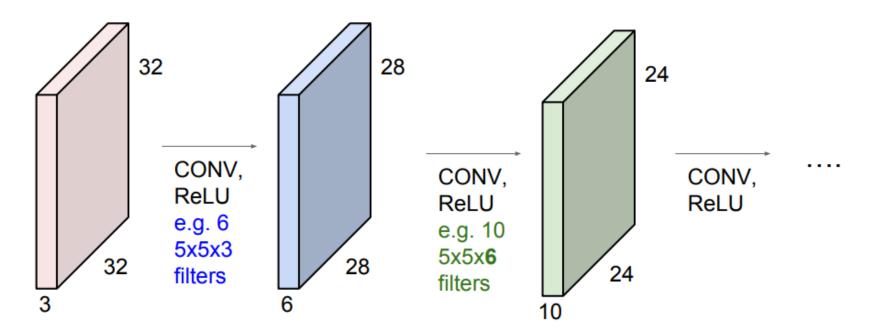
 $(x_1 \text{ AND } x_2))$

Convolutional Nets



Convolutional Nets

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions



Topics

- Input and output size
- Number of parameters
- Convolution operation (stride, pad)
- Max pooling

Training NN with Backpropagation

Given training set $(x_1, y_1), \dots, (x_N, y_N)$ Initialize all parameters $W^{[\ell]}, b^{[\ell]}$ randomly, for all layers ℓ Loop

```
Set \Delta_{ij}^{(l)} = 0 \quad \forall l, i, j (Used to accumulate gradient) For each training instance (\mathbf{x}_i, y_i):

Set \mathbf{a}^{(1)} = \mathbf{x}_i Compute \{\mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}\} via forward propagation EPOCH Compute \boldsymbol{\delta}^{(L)} = \mathbf{a}^{(L)} - y_i Compute errors \{\boldsymbol{\delta}^{(L-1)}, \dots, \boldsymbol{\delta}^{(2)}\} Compute gradients \Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}
```

Update weights via gradient step

•
$$W_{ij}^{[\ell]} = W_{ij}^{[\ell]} - \alpha \frac{\Delta_{ij}^{[\ell]}}{N}$$

• Similar for $b_{ij}^{[\ell]}$

Until weights converge or maximum number of epochs is reached

Stochastic Gradient Descent

Initialization

- For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random

Backpropagation

- Fix learning rate α
- For all layers ℓ (starting backwards)
 - For all training examples x_i, y_i

$$-W^{[\ell]} = W^{[\ell]} - \alpha \frac{\partial L(\hat{y}_i, y_i)}{\partial W^{[\ell]}}$$
$$-b^{[\ell]} = b^{[\ell]} - \alpha \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

Incremental version of GD

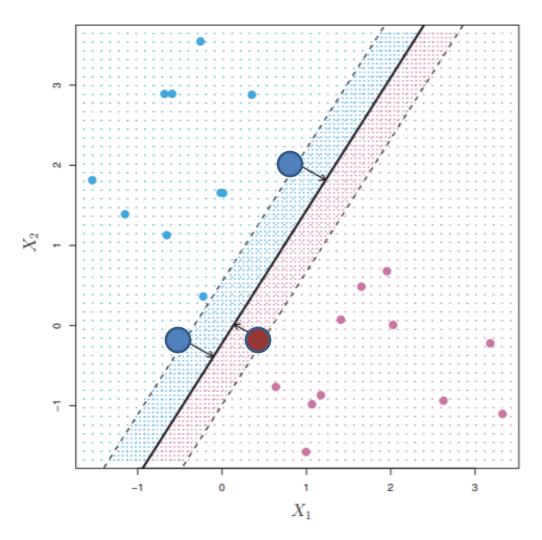
Mini-batch Gradient Descent

- Initialization
 - For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random
- Backpropagation
 - Fix learning rate α
 - For all layers ℓ (starting backwards)
 - For all batches b of size B with training examples x_{ib} , y_{ib}

$$-W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{B} \frac{\partial L(\hat{y}_{ib}, y_{ib})}{\partial W^{[\ell]}}$$

$$-b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{B} \frac{\partial L(\hat{y}_{ib}, y_{ib})}{\partial b^{[\ell]}}$$

Linear SVM - Max Margin



- Support vectors are "closest" to hyperplane
- If support vectors change, classifier changes

SVM with Kernels

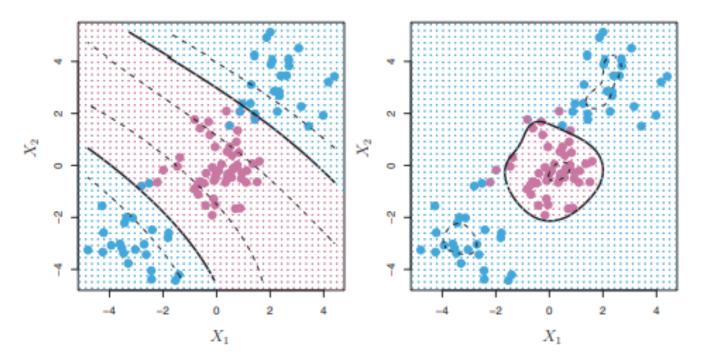


FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to the non-linear data from Figure 9.8, resulting in a far more appropriate decision rule. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.

SVM Topics

- Linear SVM
 - Maximum margin
 - Error budget
 - Solution depends only on support vectors
- Kernel SVM
 - Examples of kernels

Comparing classifiers

Algorithm	Interpretable	Model size	Predictive accuracy	Training time	Testing time
Logistic regression	High	Small	Lower	Low	Low
kNN	Medium	Large	Lower	No training	High
LDA	Medium	Small	Lower	Low	Low
Decision trees	High	Medium	Lower	Medium	Low
Ensembles	Low	Large	High	High	High
Naïve Bayes	Medium	Small	Lower	Medium	Low
SVM	Medium	Small	High	High	Low
Neural Networks	Low	Large	High	High	Low 35

