DS 5220

Supervised Machine Learning and Learning Theory

Alina Oprea
Associate Professor, CCIS
Northeastern University

September 9 2019

Class Outline

- Introduction
 - Probability and linear algebra review
- Regression 2 weeks
 - Linear regression, polynomial, spline regression
- Classification 4 weeks
 - Linear classification (logistic regression, LDA)
 - Non-linear models (decision trees, SVM, Naïve Bayes)
 - Ensembles (random forest, AdaBoost)
 - Model selection, regularization, cross validation
- Neural networks and deep learning 2 weeks
 - Back-propagation, gradient descent
 - NN architectures (feed-forward, convolutional, recurrent)
- Adversarial ML 1 lecture
 - Security of ML at testing and training time

Resources

Instructors

- Alina Oprea
- TAs: Yuxuan (Ewen) Wang; Christopher Gomes

Schedule

- Mon, Wed 2:50-4:30pm
- West Village H 108
- Office hours:
 - Alina: Wed 4:30 6:00 pm (ISEC 625)
 - Christopher: Monday 5:00-6:00pm (ISEC 605)
 - Ewen: Thursday 5:00-6:00pm (ISEC 605)

Online resources

- Slides will be posted after each lecture on public website
- Piazza for questions and discussion
- Gradescope for homework and project submission

Classification

Training data

- $-x_i = [x_{i,1}, ... x_{i,d}]$: vector of image pixels (features)
- Size d = 28x28 = 784
- $-y_i$: image label

Models (hypothesis)

- Example: Linear model (parametric model)
 - f(x) = wx + b
- Classify 1 if f(x) > T; 0 otherwise

Classification algorithm

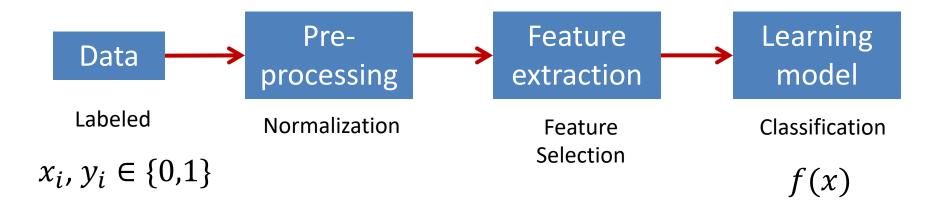
- Training: Learn model parameters w, b to minimize error (number of training examples for which model gives wrong label)
- Output: "optimal" model

Testing

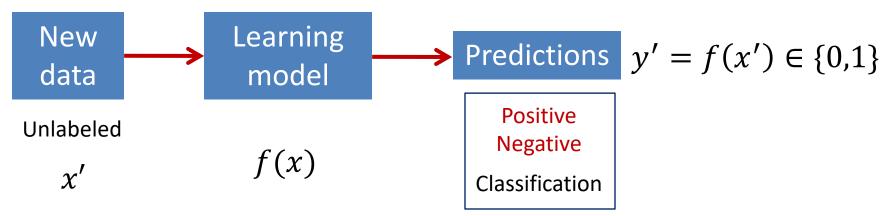
- Apply learned model to new data and generate prediction f(x)

Supervised Learning: Classification

Training

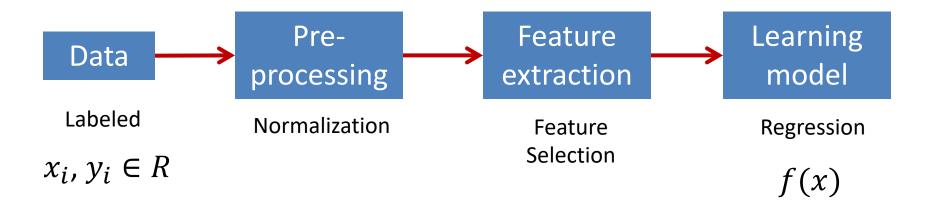


Testing

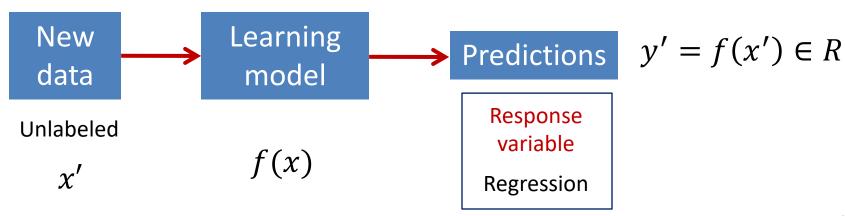


Supervised Learning: Regression

Training



Testing



Supervised Learning Tasks

- Classification
 - Learn to predict class (discrete)
 - Minimize error $1/N \sum_{i=1}^{N} [y_i \neq f(x_i)]$
- Regression
 - Learn to predict response variable (numerical)
 - Minimize MSE (Mean Square Error between prediction and actual values): loss function
- Both classification and regression
 - Training and testing phase
 - "Optimal" model is learned in training and applied in testing

Terminology

- Hypothesis space $H = \{f: X \to Y\}$
- Training data $D = (x_i, y_i) \in X \times Y$
- Features: $x_i \in X$
- Labels / response variables $y_i \in Y$
 - Classification: discrete $y_i \in \{0,1\}$
 - Regression: $y_i \in R$
- Loss function: L(f, D)
 - Measures how well f fits training data
- Training algorithm: Find hypothesis $\hat{f}: X \to Y$

$$-\hat{f} = \underset{f \in H}{\operatorname{argmin}} L(f, D)$$

Learning Challenges

Goal

- Classify well new testing data
- Model generalizes well to new testing data

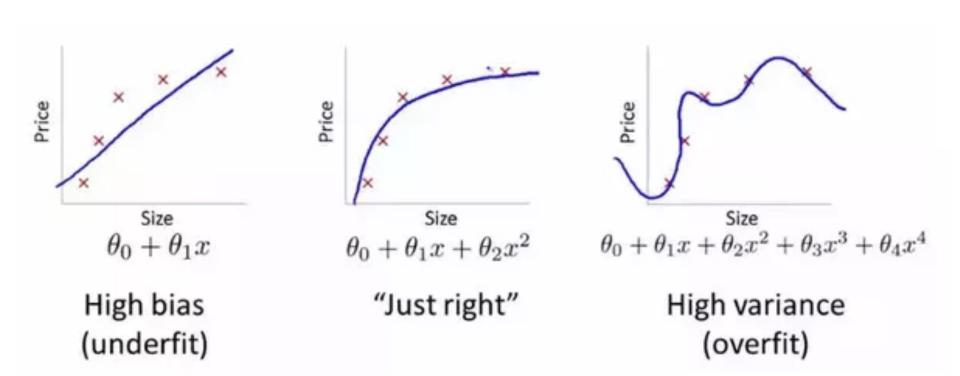
Variance

- Amount by which model would change if we estimated it using a different training data set
- More complex models result in higher variance

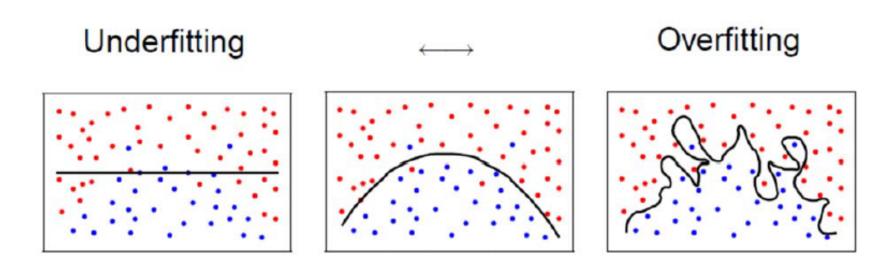
Bias

- Error introduced by approximating a real-life problem by a much simpler model
- E.g., assume linear model (linear regression)
- More complex models result in lower bias

Example: Regression

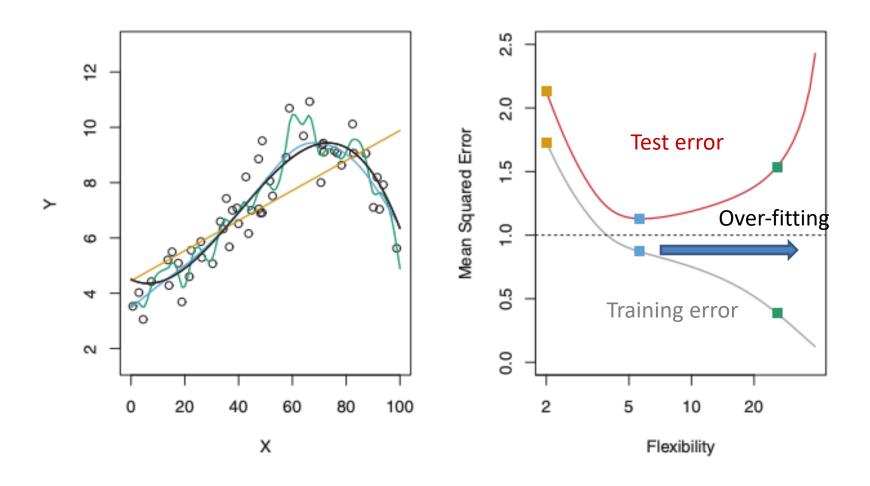


Generalization Problem in Classification

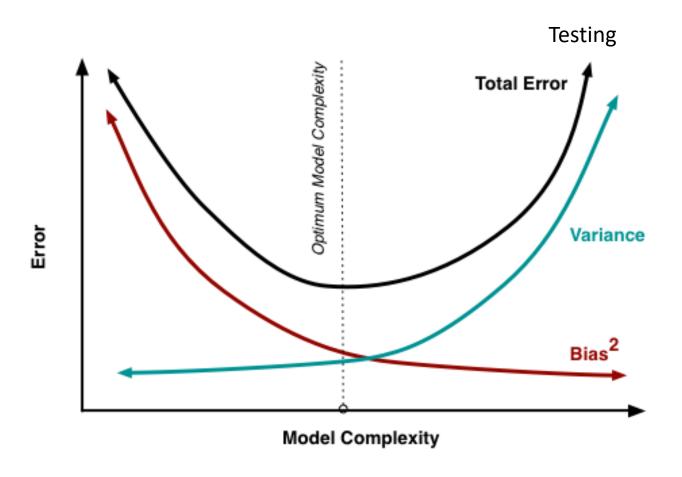


Again, need to control the complexity of the (discriminant) function

Training and testing error



Bias-Variance Tradeoff



Model underfits the data

Model overfits the data

Occam's Razor

- William of Occam: Monk living in the 14th century
- Principle of parsimony:

"One should not increase, beyond what is necessary, the number of entities required to explain anything"

- When many solutions are available for a given problem, we should select the simplest one
- But what do we mean by simple?
- We will use prior knowledge of the problem to solve to define what is a simple solution

Summary

- ML is a subset of AI designing learning algorithms
- Learning tasks are supervised (e.g., classification and regression) or unsupervised (e.g., clustering)
 - Supervised learning uses labeled training data
- Learning the "best" model is challenging
 - Design algorithm to fit the data
 - Bias-Variance tradeoff
 - Need to generalize on new, unseen test data
 - Occam's razor (prefer simplest model with good performance)

Probability review

Probability Resources

- <u>Review notes</u> from Stanford's machine learning class
- Sam Roweis's <u>probability review</u>
- David Blei's probability review
- Books:
 - Sheldon Ross, A First course in probability

Discrete Random Variables

- Let A denote a random variable
 - A represents an event that can take on certain values
 - Each value has an associated probability
- Examples of binary random variables:
 - -A = I have a headache
 - -A = Sally will be the US president in 2020
- P(A) is "the fraction of possible worlds in which A is true"

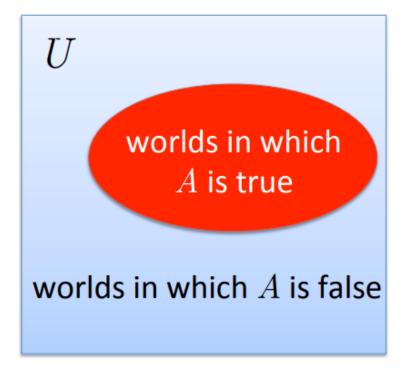
Visualizing A

- Universe U is the event space of all possible worlds
 - Its area is 1

$$- P(U) = 1$$

- P(A) = area of red oval
- Therefore:

$$P(A) + P(\neg A) = 1$$
$$P(\neg A) = 1 - P(A)$$



Axioms of Probability

Kolmogorov showed that three simple axioms lead to the rules of probability theory

- de Finetti, Cox, and Carnap have also provided compelling arguments for these axioms
- All probabilities are between 0 and 1:

$$0 \le P(A) \le 1$$

2. Valid propositions (tautologies) have probability 1, and unsatisfiable propositions have probability 0:

$$P(true) = 1$$
; $P(false) = 0$

3. The probability of a disjunction is given by:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Interpreting the Axioms

- $0 \le P(A) \le 1$
- P(true) = 1
- P(false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

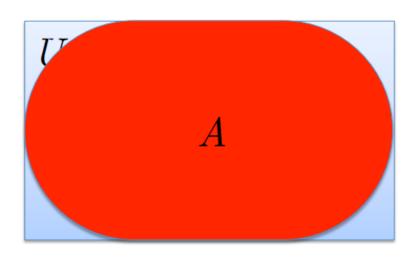


The area of A can't get any smaller than 0

A zero area would mean no world could ever have A true

Interpreting the Axioms

- $0 \le P(A) \le 1$
- P(true) = 1
- P(false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

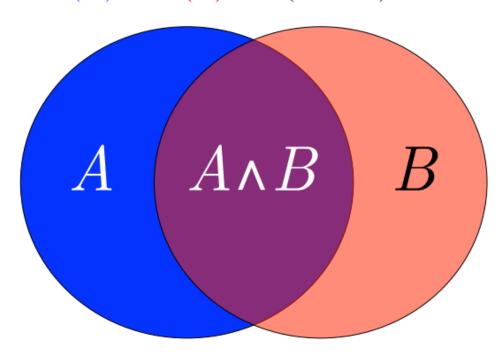


The area of A can't get any bigger than 1

An area of 1 would mean A is true in all possible worlds

Interpreting the Axioms

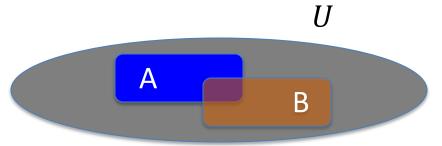
- $0 \le P(A) \le 1$
- P(true) = 1
- P(false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$



The union bound

For events A and B

$$P[A \cup B] \leq P[A] + P[B]$$



Axiom:
$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

If
$$A \cap B = \Phi$$
, then $P[A \cup B] = P[A] + P[B]$

Example:

$$A_1 = \{ all x in \{0,1\}^n s.t lsb_2(x)=11 \} ; A_2 = \{ all x in \{0,1\}^n s.t. msb_2(x)=11 \}$$

$$P[lsb_2(x)=11 \text{ or } msb_2(x)=11] = P[A_1 \cup A_2] \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Random Variables (Discrete)

Def: a random variable X is a function $X:U \rightarrow V$

Def: A discrete random variable takes a finite number of values: |V| is finite

Example: X is modeling a coin toss with output 1 (heads) or 0 (tail)

P[X=1] = p, P[X=0] = 1-p

Bernoulli Random Variable

We write $X \leftarrow U$ to denote a <u>uniform random variable</u> (discrete) over U

for all $u \in U$: P[X = u] = 1/|U|

Example: If p=1/2; then X is a uniform coin toss

Probability Mass Function (PMF): p(v) = P[X = v]

Example

1. X is the number of heads in a sequence of n coin tosses

What is the probability P[X = k]?

$$P[X = k] = {n \choose k} p^k (1-p)^{n-k}$$
 Binomial Random Variable

2. X is the sum of two fair dice

What is the probability
$$P[X = k]$$
 for $k \in \{2, ..., 12\}$? $P[X=2]=1/36; P[X=3]=2/36; P[X=4]=3/36$

For what k is P[X = k] highest?

Multi-Value Random Variable

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\{v_1, v_2, ..., v_k\}$
- Thus...

$$P(A = v_i \land A = v_j) = 0 \quad \text{if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor \dots \lor A = v_k) = 1$$

$$1 = \sum_{i=1}^{k} P(A = v_i)$$

Multi-Value Random Variable

We can also show that:

$$P(B) = P(B \land [A = v_1 \lor A = v_2 \lor \dots \lor A = v_k])$$

$$P(B) = \sum_{i=1}^{k} P(B \land A = v_i)$$

• This is called marginalization over A

Expectation and variance

Expectation for discrete random variable X

$$E[X] = \sum_{v} vP[X = v]$$

Properties

- E[aX] = a E[X]
- Linearity: E[X + Y] = E[X] + E[Y]

Variance

$$Var[X] \triangleq E[(X - E(X))^2]$$

$$E[(X - E[X])^2] = E[X^2 - 2E[X]X + E[X]^2]$$

$$= E[X^2] - 2E[X]E[X] + E[X]^2$$

$$= E[X^2] - E[X]^2,$$

Example discrete RVs

 X ~ Bernoulli(p) (where 0 ≤ p ≤ 1): one if a coin with heads probability p comes up heads, zero otherwise.

$$p(x) = \begin{cases} p & \text{if } p = 1\\ 1 - p & \text{if } p = 0 \end{cases}$$

 X ~ Binomial(n, p) (where 0 ≤ p ≤ 1): the number of heads in n independent flips of a coin with heads probability p.

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

X ~ Geometric(p) (where p > 0): the number of flips of a coin with heads probability p
until the first heads.

$$p(x) = p(1-p)^{x-1}$$

Continuous Random Variables

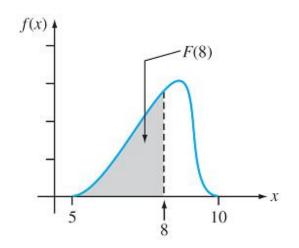
- X:U→V is continuous RV if it takes infinite number of values
- The cumulative distribution function CDF $F: R \longrightarrow \{0,1\}$ for X is defined for every value x by:

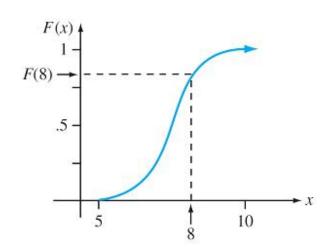
$$F(x) = \Pr(X \le x)$$

The probability distribution function PDF f(x) for X is

$$f(x) = dF(x)/dx$$

Increasing





Example continuous RV

X ~ Uniform(a, b) (where a < b): equal probability density to every value between a
and b on the real line.

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b\\ 0 & \text{otherwise} \end{cases}$$

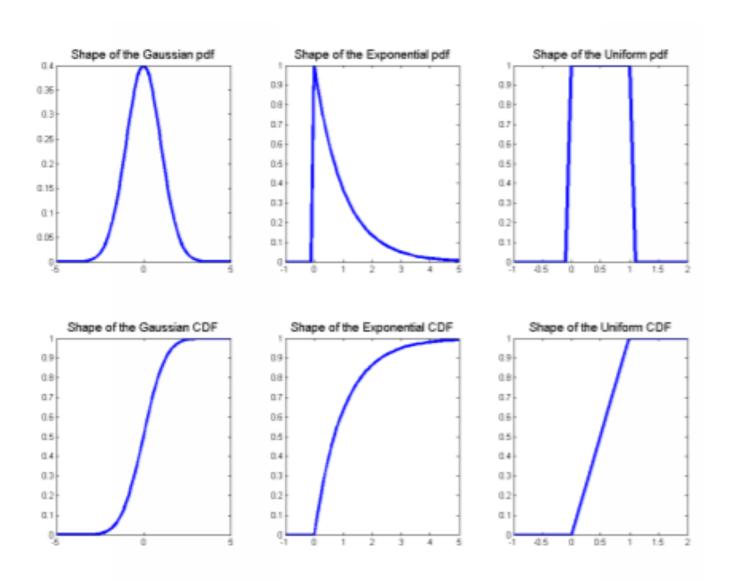
 X ~ Exponential(λ) (where λ > 0): decaying probability density over the nonnegative reals.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

• $X \sim Normal(\mu, \sigma^2)$: also known as the Gaussian distribution

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Example CDFs and PDFs



Continuous RV

Expectation for continuous random variable X

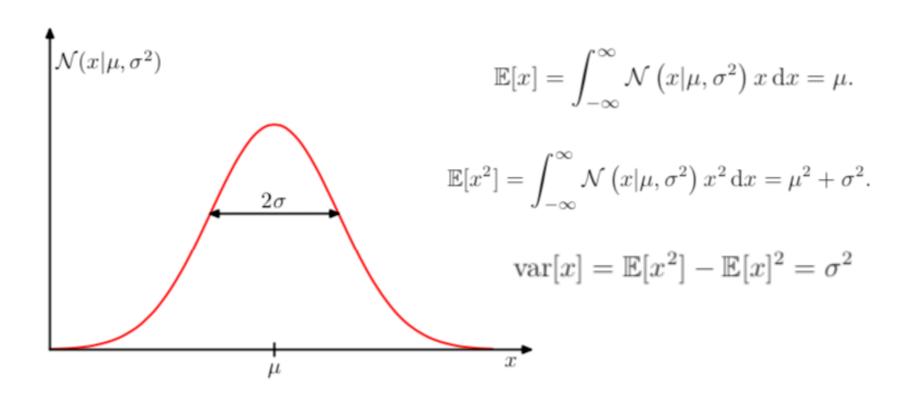
$$E[g(X)] \triangleq \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

Variance is similar!

Example: Let X be uniform RV on [a,b]

- What is the CDF and PDF?
- Compute the expectation and variance of X

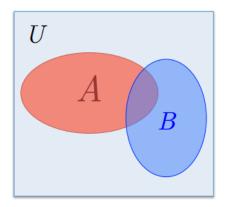
Normal (Gaussian) distribution



$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Conditional Probability

• $P(A \mid B)$ = Fraction of worlds in which B is true that also have A true



What if we already know that *B* is true?

That knowledge changes the probability of $\cal A$

 Because we know we're in a world where B is true

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

<u>Def</u>: Events A and B are **independent** if and only if

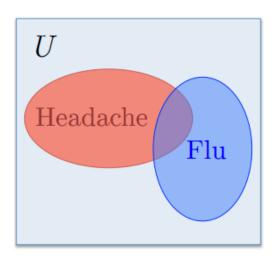
$$P[A \cap B] = P[A] \cdot P[B]$$

If A and B are independent

$$P[A|B] = \frac{P[A \cap B]}{P[B]} = \frac{P[A]P[B]}{P[B]} = P[A]$$

Inference from Conditional Probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

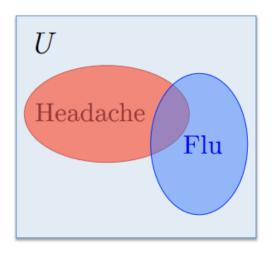


P(headache) = 1/10 P(flu) = 1/40 P(headache | flu) = 1/2

"Headaches are rare and flu is rarer, but if you're coming down with the flu there's a 50-50 chance you'll have a headache."

Inference from Conditional Probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$



One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu."

Is this reasoning good?

Inference from Conditional Probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

$$P(A \land B) = P(A \mid B) \times P(B)$$

```
P(headache) = 1/10 Want to solve for:

P(flu) = 1/40 P(headache \wedge flu) = ?

P(headache | flu) = 1/2 P(flu | headache) = ?

P(headache \wedge flu) = P(headache | flu) x P(flu)

= 1/2 x 1/40 = 0.0125

P(flu | headache) = P(headache \wedge flu) / P(headache)

= 0.0125 / 0.1 = 0.125
```

Bayes Theorem

Bayes' Rule

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

- Exactly the process we just used
- The most important formula in probabilistic machine learning

(Super Easy) Derivation:

$$P(A \land B) = P(A \mid B) \times P(B)$$

$$P(B \land A) = P(B \mid A) \times P(A)$$

these are the same

Just set equal...

$$P(A \mid B) \times P(B) = P(B \mid A) \times P(A)$$
 and solve...

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418**

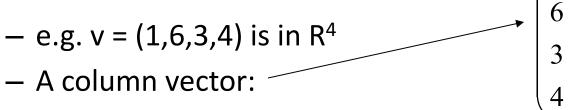
Linear algebra review

Resources

- Zico Kolter, <u>Linear algebra review</u>
- Sam Roweis's <u>linear algebra review</u>
- Books:
 - O. Bretscher, Linear Algebra with Applications

Vectors and matrices

 Vector in Rⁿ is an ordered set of n real numbers.



 m-by-n matrix is an object in R^{mxn} with m rows and n columns, each entry filled with a (typically) real number:

Matrix multiplication

We will use upper case letters for matrices. The elements are referred by A_{i,j}.

Matrix product:

$$A \in \mathbb{R}^{m \times n} \qquad B \in \mathbb{R}^{n \times p}$$

$$C = AB \in \mathbb{R}^{m \times p}$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

e.g.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

Matrix transpose

Transpose: You can think of it as

"flipping" the rows and columns

OR

– "reflecting" vector/matrix on line

e.g.
$$\begin{pmatrix} a \\ b \end{pmatrix}^T = \begin{pmatrix} a & b \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$\bullet \ (A^T)^T = A$$

$$\bullet \ (AB)^T = B^T A^T$$

•
$$(AB)^T = B^T A^T$$

• $(A+B)^T = A^T + B^T$

A is a symmetric matrix if $A = A^T$

Inverse of a matrix

- Inverse of a square matrix A, denoted by A⁻¹ is the *unique* matrix s.t.
 - $-AA^{-1}=A^{-1}A=I$ (identity matrix)

• If A⁻¹ and B⁻¹ exist, then

$$-(AB)^{-1}=B^{-1}A^{-1}$$
,

$$-(A^{T})^{-1}=(A^{-1})^{T}$$

• For diagonal matrices $\mathbf{D}^{-1} = \operatorname{diag}\{d_1^{-1}, \dots, d_n^{-1}\}$

Linear independence

- A set of vectors is linearly independent if none of them can be written as a linear combination of the others.
- Vectors $v_1,...,v_k$ are linearly independent if $c_1v_1+...+c_kv_k=0$ implies $c_1 = \dots = c_k = 0$

e.g.
$$\begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 3 \end{pmatrix}$$

 (c_1, c_2) =(0,0), i.e. the columns are linearly independent.

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ $x_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$ Linearly dependent $x_3 = -2x_1 + x_2$

Linearly dependent

$$x_3 = -2x_1 + x_2$$

Rank of a Matrix

- rank(A) (the rank of a m-by-n matrix A) is
 The maximal number of linearly independent columns
 The maximal number of linearly independent rows
- If A is n by m, then
 - $\operatorname{rank}(A) \le \min(m,n)$

• Examples
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 3 \\ 0 & 5 & 2 \end{pmatrix}$$

System of linear equations

$$4x_1 - 5x_2 = -13 \\
-2x_1 + 3x_2 = 9.$$

Matrix formulation

$$Ax = b$$

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}.$$

If A has an inverse, solution is $x = A^{-1}b$

Covariance

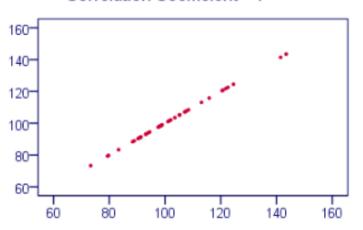
- X and Y are random variables
- Cov(X,Y) = E[(X E(X))(Y E(Y))]
- Properties
 - (i) Cov(X, Y) = Cov(Y, X)
 - (ii) Cov(X, X) = Var(X)
 - (iii) Cov(aX, Y) = a Cov(X, Y)

(iv)
$$\text{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \text{Cov}(X_{i}, Y_{j})$$

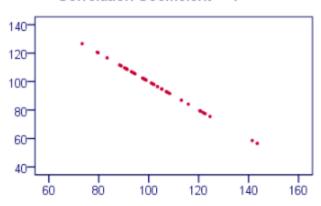
Pearson Correlation

$$\rho = \operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} \in [-1, 1]$$

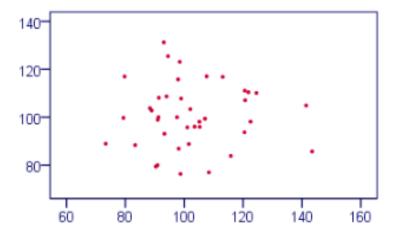
Correlation Coefficient = 1



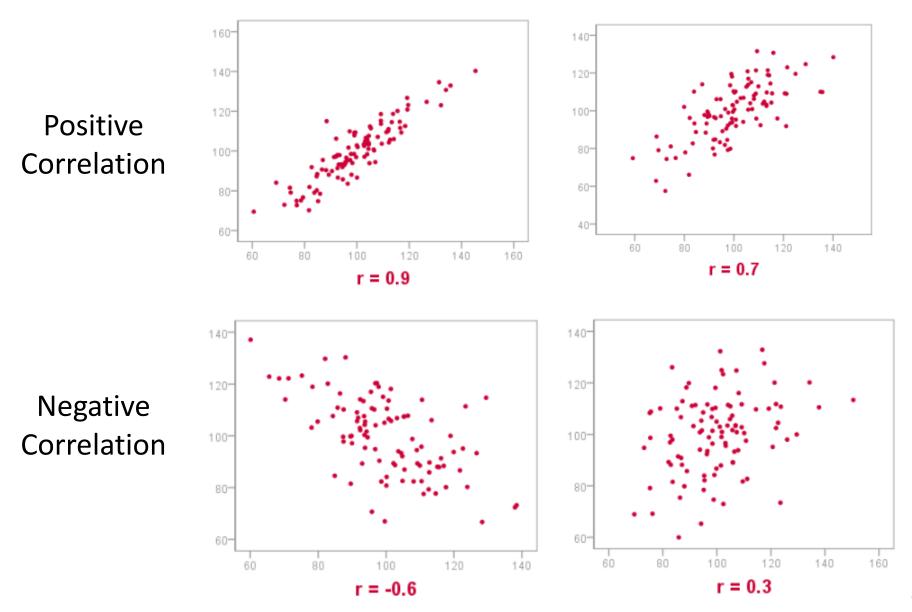
Correlation Coefficient = -1



Correlation Coefficient = 0



Positive/Negative Correlation



$$F_{X,Y}(x,y) = \mathrm{P}(X \leq x, Y \leq y)$$
 (Eq.1) Joint CDF

- $X \sim N(\mu_X, \sigma_X)$ and $Y \sim N(\mu_Y, \sigma_Y)$ are Normal
- $\mu = (E[X], E[Y]) = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}$

mean vector

•
$$\Sigma = \begin{pmatrix} Var(X) & Cov(X,Y) \\ Cov(X,Y) & Var(Y) \end{pmatrix} = \begin{pmatrix} \sigma_X^2 & \rho & \sigma_X \sigma_Y \\ \rho & \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix}$$

covariance matrix

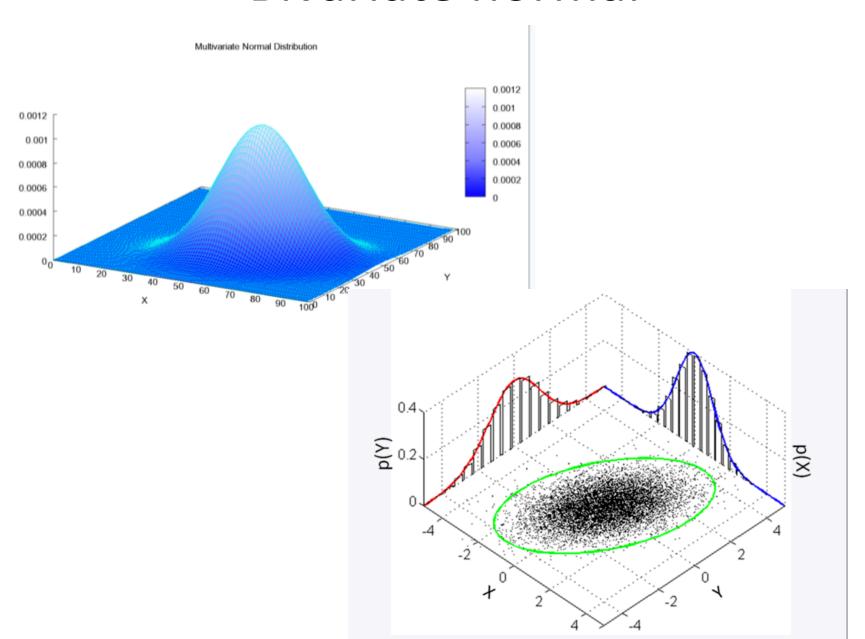
$$F_{X,Y}(x,y) = \mathrm{P}(X \leq x, Y \leq y)$$
 (Eq.1)

Joint CDF

$$f_{X,Y}(x,y)=rac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$
 (Eq.5)

Joint PDF

$$f(x,y) = \frac{\exp(-\frac{1}{2}(x - \mu)^{T} \Sigma^{-1}(x - \mu))}{2\pi\sqrt{|\Sigma|}}$$



If X and Y have mean μ_X and μ_Y , general case is:

$$\begin{split} & f_{X,Y}(x,y) = \\ & = \frac{1}{2\pi\sigma_X\sigma_Y(1-\rho^2)^{1/2}} \exp\left[\frac{-1}{2(1-\rho^2)} \left(\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - 2\rho\frac{(x-\mu_X)}{\sigma_X}\frac{(y-\mu_Y)}{\sigma_Y}\right)\right] \end{split}$$

If X and Y are uncorrelated ($\rho = 0$), and centered with mean 0:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y}e^{-\frac{x^2}{2\sigma_X^2} - \frac{y^2}{2\sigma_Y^2}},$$