DS 5220

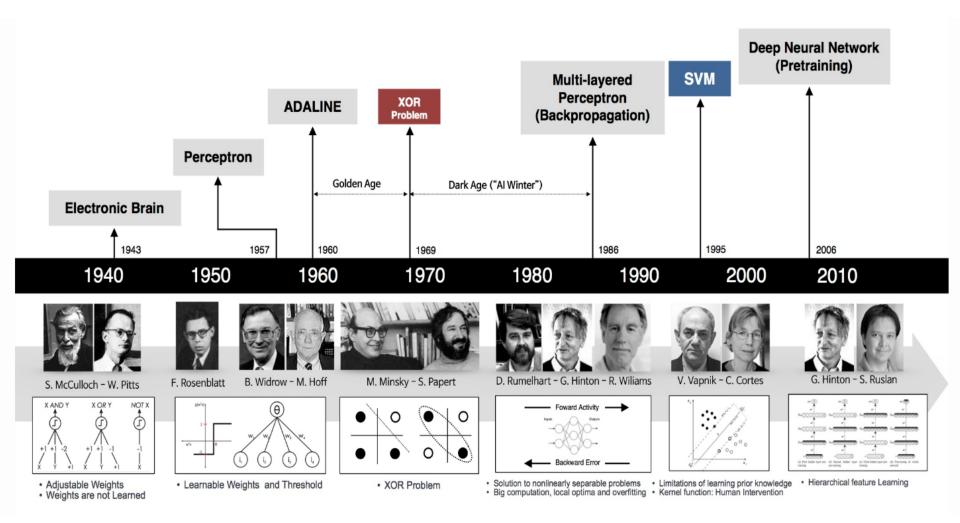
Supervised Machine Learning and Learning Theory

Alina Oprea
Associate Professor, CCIS
Northeastern University

Comparing classifiers

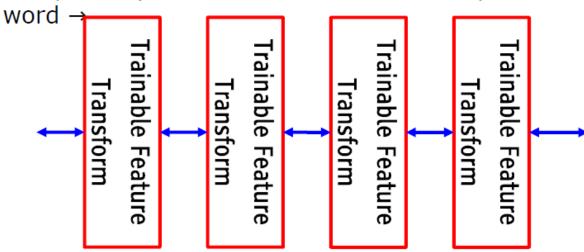
Algorithm	Interpretable	Model size	Predictive accuracy	Training time	Testing time
Logistic regression	High	Small	Lower	Low	Low
kNN	Medium	Large	Lower	No training	High
LDA	Medium	Small	Lower	Low	Low
Decision trees	High	Medium	Lower	Medium	Low
Ensembles	Low	Large	High	High	High
Naïve Bayes	Medium	Small	Lower	Medium	Low
SVM	Medium	Small	High	High	Low
Neural Networks	Low	Large	High	High	Low 2

History of Deep Learning

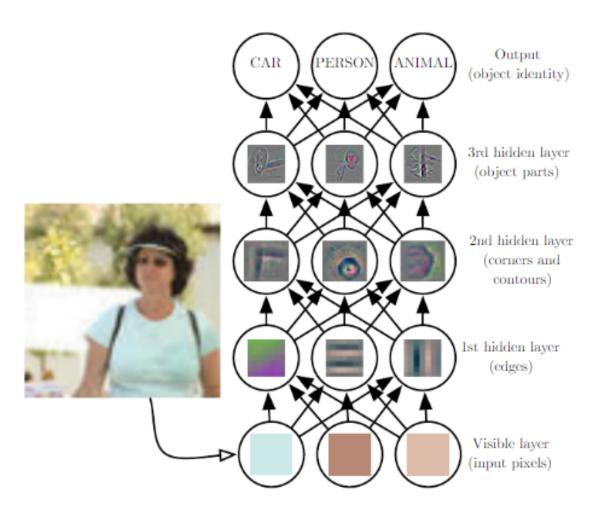


Trainable Feature Hierarchy

- Hierarchy of representations with increasing level of abstraction
- Each stage is a kind of trainable feature transform
- Image recognition
 - Pixel → edge → texton → motif → part → object
- Text
 - Character → word → word group → clause → sentence → story
- Speech
 - Sample → spectral band → sound → ... → phone → phoneme →



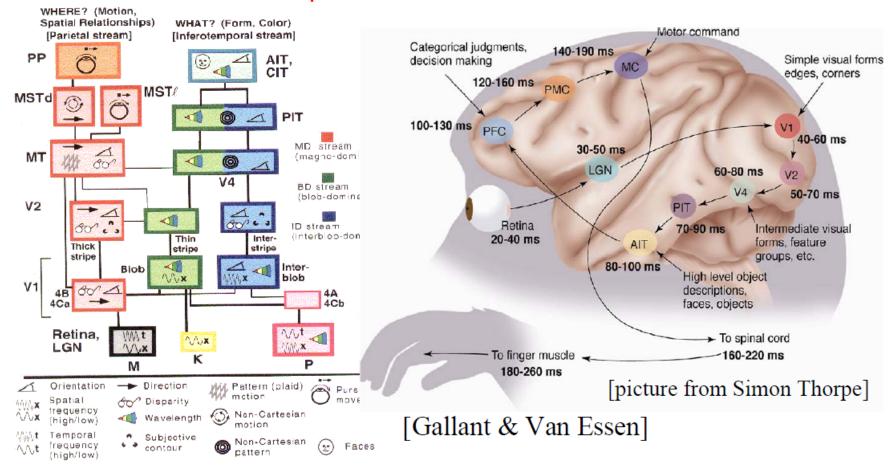
Learning Representations



Deep Learning addresses the problem of learning hierarchical representations

The Visual Cortex is Hierarchical

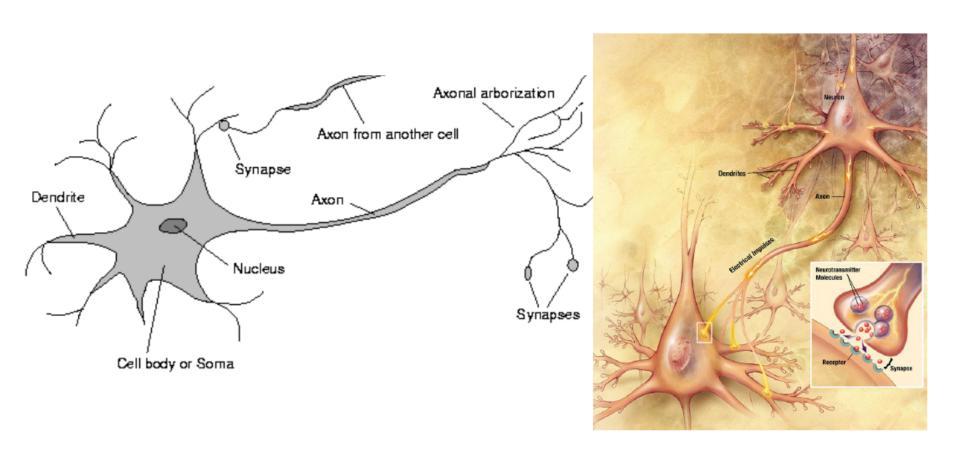
- The ventral (recognition) pathway in the visual cortex has multiple stages
- Retina LGN V1 V2 V4 PIT AIT
- Lots of intermediate representations



Neural Function

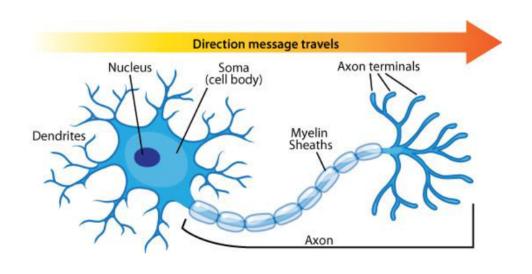
- Brain function (thought) occurs as the result of the firing of neurons
- Neurons connect to each other through synapses, which propagate action potential (electrical impulses) by releasing neurotransmitters
 - Synapses can be excitatory (potential-increasing) or inhibitory (potential-decreasing), and have varying activation thresholds
 - Learning occurs as a result of the synapses' plasticicity:
 They exhibit long-term changes in connection strength
- There are about 10¹¹ neurons and about 10¹⁴ synapses in the human brain!

Biology of a Neuron



Analogy to Human Brain

Human Brain



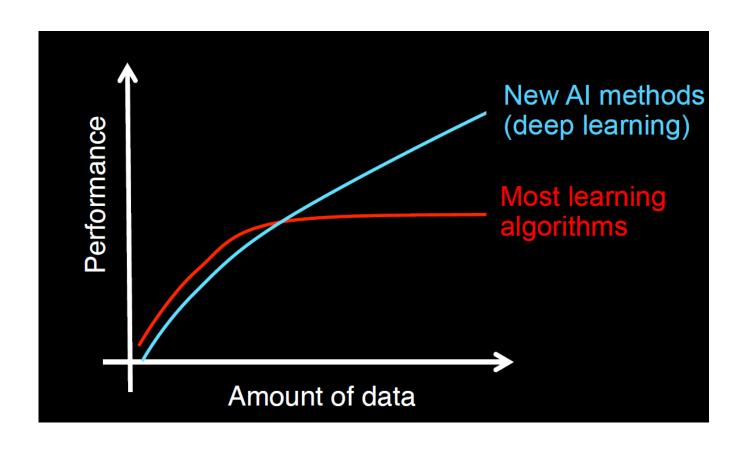
Biological Neuron



Neural Networks

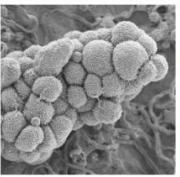
- Origins: Algorithms that try to mimic the brain.
- Very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
- Artificial neural networks are not nearly as complex or intricate as the actual brain structure

Performance of Deep Learning



Deep Learning Applications

DEEP LEARNING EVERYWHERE



INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

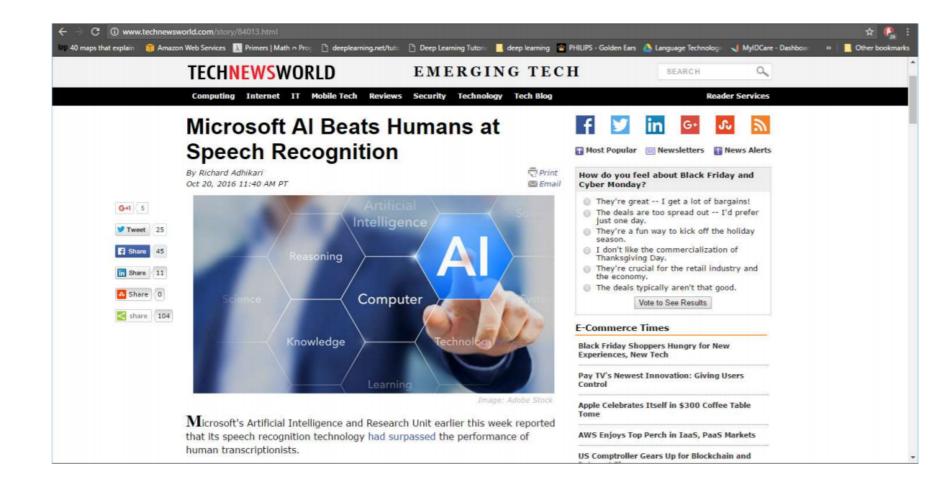
SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

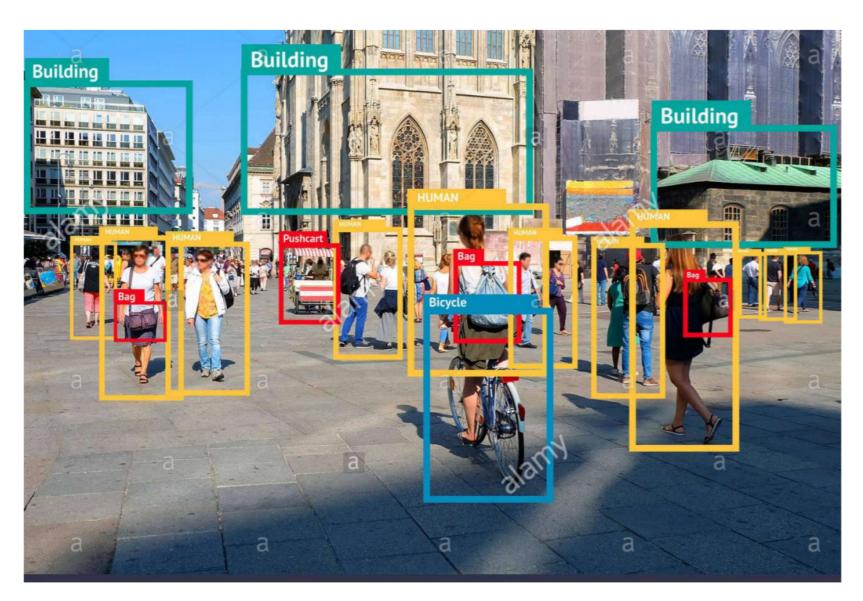
Pedestrian Detection Lane Tracking Recognize Traffic Sign

Success stories: Speech recognition

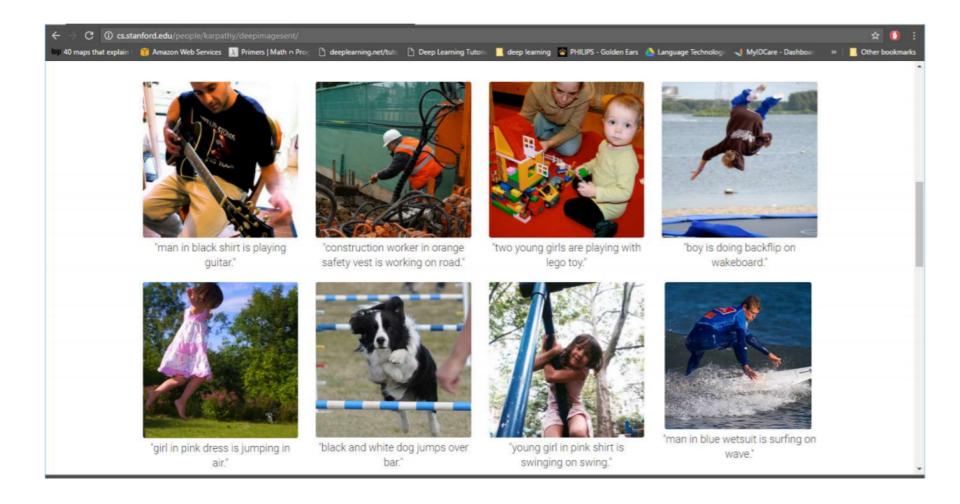


Success stories: Machine Translation

Success stories: Image segmentation



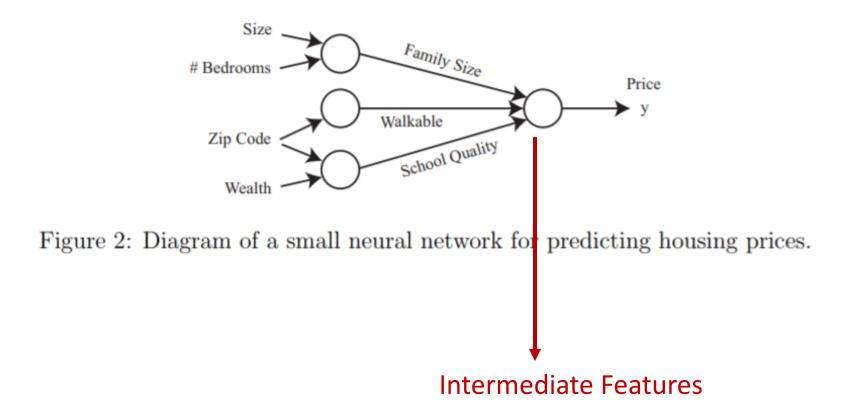
Success stories: Image captioning



References

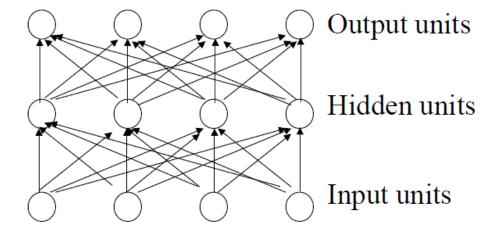
- Deep Learning books
 - https://d2l.ai/ (D2L)
 - https://www.deeplearningbook.org/ (advanced)
- Stanford notes on deep learning
 - http://cs229.stanford.edu/notes/cs229-notesdeep_learning.pdf
- History of Deep Learning
 - https://beamandrew.github.io/deeplearning/2017/02/23/deep learning 101 part1.html

Example



- Provide as input only training data: input and label
- Neural Networks automatically learn intermediate features!

Neural Networks



Training labels

Learned during training

Training data

Layered feed-forward network

- Neural networks are made up of nodes or units, connected by links
- Each link has an associated weight and activation level
- Each node has an input function (typically summing over weighted inputs), an activation function, and an output

Recall: The Perceptron

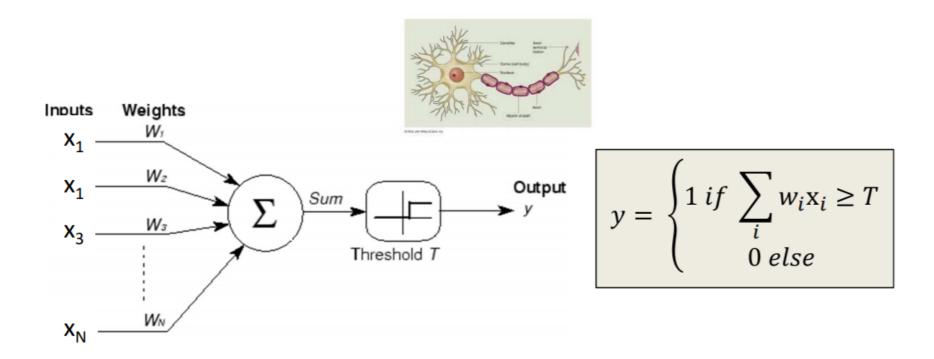
$$h(x) = \operatorname{sign}(\theta^{\mathsf{T}} x)$$
 where $\operatorname{sign}(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$

• The perceptron uses the following update rule each time it receives a new training instance $(\boldsymbol{x}^{(i)}, y^{(i)})$

$$\theta_j \leftarrow \theta_j - \frac{1}{2} \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$$
either 2 or -2

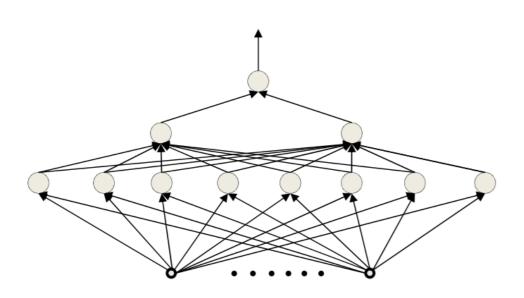
- If the prediction matches the label, make no change
- Otherwise, adjust heta

Perceptron

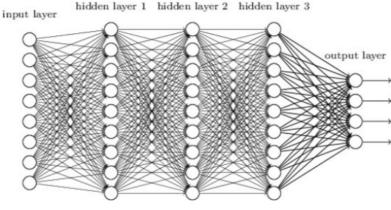


- A threshold unit
 - "Fires" if the weighted sum of inputs exceeds a threshold

Multi-Layer Perceptron



Deep neural network

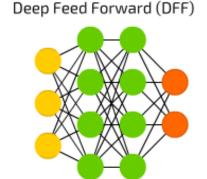


- A network of perceptrons
 - Generally "layered"

Neural Network Architectures

Feed-Forward Networks

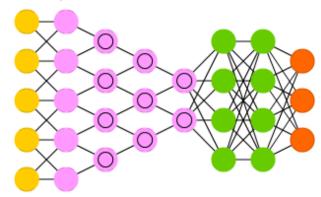
 Neurons from each layer connect to neurons from next layer



Convolutional Networks

- Includes convolution layer for feature reduction
- Learns hierarchical representations

Deep Convolutional Network (DCN)

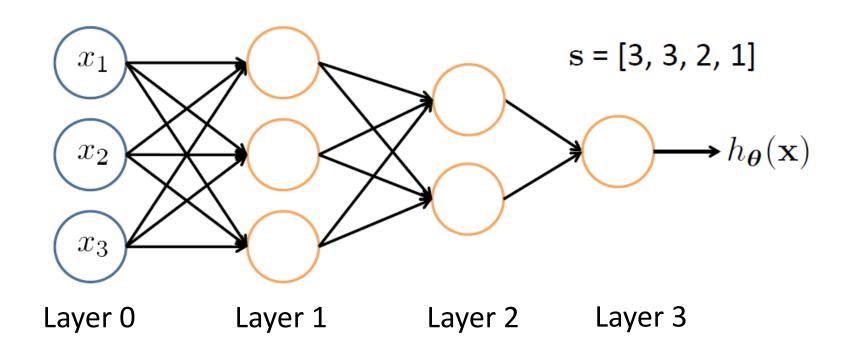


Recurrent Networks

- Keep hidden state
- Have cycles in computational graph

Recurrent Neural Network (RNN)

Feed-Forward Networks



 ${\it L}$ denotes the number of layers

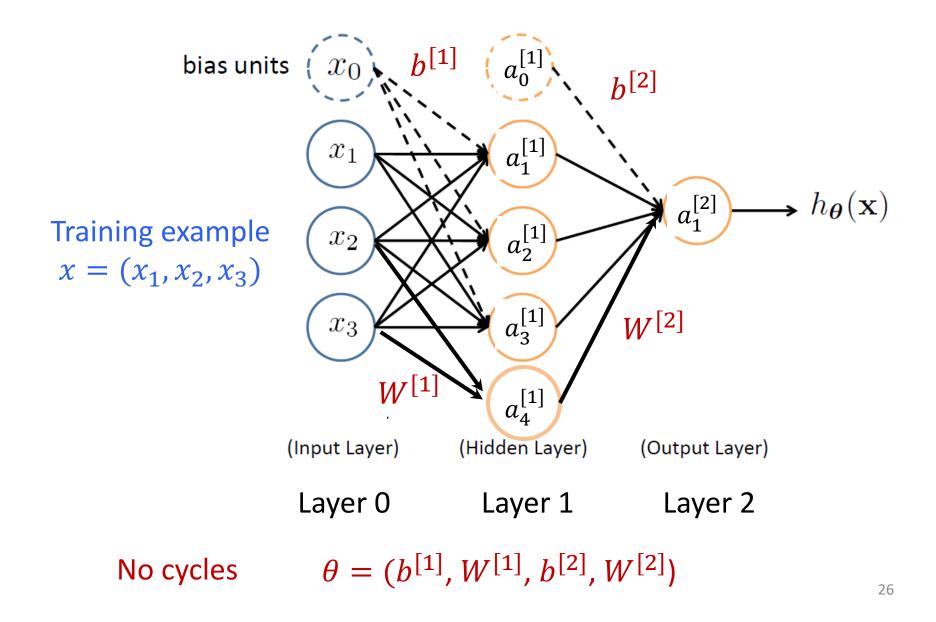
 $\mathbf{s} \in \mathbb{N}^{+L}$ contains the numbers of nodes at each layer

- Not counting bias units
- Typically, $s_0=d$ (# input features) and $s_{L-1}\!=\!K$ (# classes)

Feed-Forward NN

- Hyper-parameters
 - Number of layers
 - Architecture (how layers are connected)
 - Number of hidden units per layer
 - Number of units in output layer
 - Activation functions
- Other
 - Initialization
 - Regularization

Feed-Forward Neural Network



Vectorization

$$\underbrace{\begin{bmatrix} z_1^{[1]} \\ \vdots \\ \vdots \\ z_4^{[1]} \end{bmatrix}}_{z^{[1]} \in \mathbb{R}^{4 \times 1}} = \underbrace{\begin{bmatrix} -W_1^{[1]^T} - \\ -W_2^{[1]^T} - \\ \vdots \\ -W_4^{[1]^T} - \end{bmatrix}}_{W^{[1]} \in \mathbb{R}^{4 \times 3}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{x \in \mathbb{R}^{3 \times 1}} + \underbrace{\begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ \vdots \\ b_4^{[1]} \end{bmatrix}}_{b^{[1]} \in \mathbb{R}^{4 \times 1}}$$

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

 $a^{[1]} = g(z^{[1]})$

Linear

Non-Linear

Vectorization

Output layer

$$z_1^{[2]} = W_1^{[2]} a^{[1]} + b_1^{[2]}$$
 and $a_1^{[2]} = g(z_1^{[2]})$

- - - - -

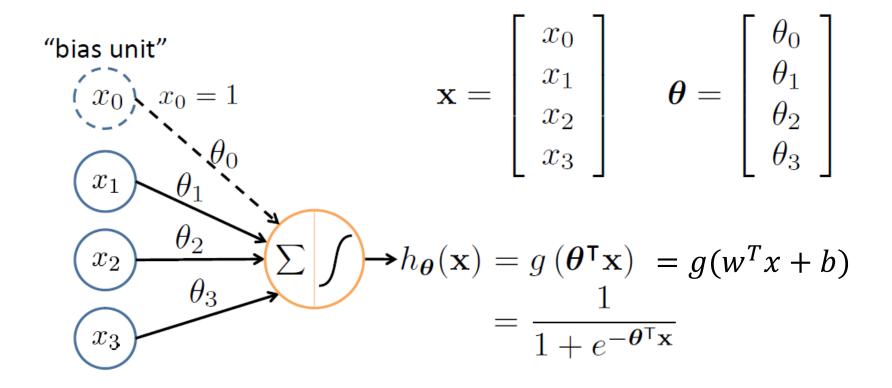
$$\underbrace{z^{[2]}}_{1\times 1} = \underbrace{W^{[2]}}_{1\times 4} \underbrace{a^{[1]}}_{4\times 1} + \underbrace{b^{[2]}}_{1\times 1} \quad \text{and} \quad \underbrace{a^{[2]}}_{1\times 1} = g(\underbrace{z^{[2]}}_{1\times 1})$$

Hidden Units

Layer 1

- First hidden unit:
 - Linear: $z_1^{[1]} = W_1^{[1]T}x + b_1^{[1]}$
 - Non-linear: $a_1^{[1]} = g(z_1^{[1]})$
- **—** ...
- Fourth hidden unit:
 - Linear: $z_4^{[1]} = W_4^{[1]T}x + b_4^{[1]}$
 - Non-linear: $a_4^{[1]} = g(z_4^{[1]})$
- Terminology
 - $-a_i^{[j]}$ Activation of unit i in layer j
 - g Activation function
 - $-W^{[j]}$ Weight vector controlling mapping from layer j-1 to j
 - $-b^{[j]}$ Bias vector from layer j-1 to j

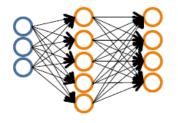
Logistic Unit: A simple NN

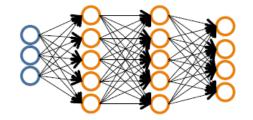


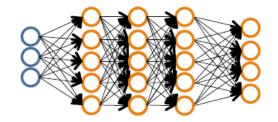
Sigmoid (logistic) activation function:
$$g(z) = \frac{1}{1 + e^{-z}}$$

How to pick architecture?

Pick a network architecture (connectivity pattern between nodes)







- # input units = # of features in dataset
- # output units = # classes

Reasonable default: 1 hidden layer

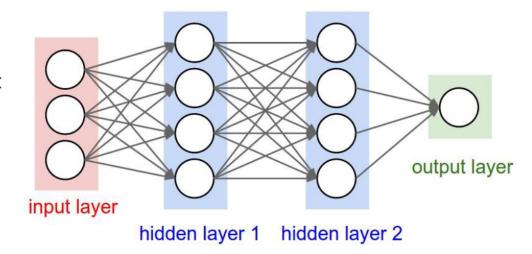
 or if >1 hidden layer, have same # hidden units in every layer (usually the more the better)

Training Neural Networks

- Input training dataset D
 - Number of features: d
 - Labels from K classes
- First layer has d+1 units (one per feature and bias)
- Output layer has K units
- Training procedure determines parameters that optimize loss function
 - Backpropagation
 - Learn optimal $W^{[i]}$, $b^{[i]}$ at layer i
- Testing done by forward propagation

Forward Propagation

- The input neurons first receive the data features of the object. After processing the data, they send their output to the first hidden layer.
- The hidden layer processes this output and sends the results to the next hidden layer.
- This continues until the data reaches the final output layer, where the output value determines the object's classification.
- This entire process is known as Forward Propagation, or Forward prop.



x — Prediction

Activation Functions

Sigmoid

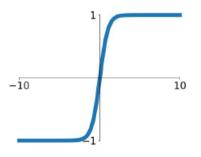
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



Binary Classification

tanh

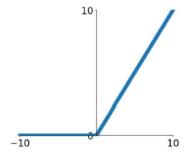
tanh(x)



Regression

ReLU

 $\max(0, x)$



Intermediary layers

Why Non-Linear Activations?

- Assume g is linear: g(z) = Uz
 - At layer 1: $z^{[1]} = W^{[1]}x + b^{[1]}$

$$-a^{[1]} = g(z^{[1]}) = Uz^{[1]} = UW^{[1]}x + Ub^{[1]}$$

• Layer 2:

$$-a^{[2]} = g(z^{[2]}) = Uz^{[2]} = UW^{[2]}a^{[1]} + Ub^{[2]} =$$

$$= UW^{[2]}UW^{[1]}x + UW^{[2]}Ub^{[1]} + Ub^{[2]}$$

- Last layer
 - Output is linear in input!
 - Then NN will only learn linear functions

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
 - Yann Lecun
- Thanks!