DS 5220

Supervised Machine Learning and Learning Theory

Alina Oprea
Associate Professor, CCIS
Northeastern University

Logistics

- Projects
 - Feedback in Gradescope
 - Team document in Piazza
 - Start working on project!
 - Milestone on Monday, Nov 18
 - 3 pages on progress
- Holiday on Monday, November 11
- Last assignment on ensembles, neural networks released late next week
- Final exam will be 2 hours on Wed 12/04

Summary Decision Trees

Representation: decision trees

Bias: prefer small decision trees

Search algorithm: greedy

· Heuristic function: information gain or information

content or others

Overfitting / pruning

Strengths

- Fast to evaluate
- Interpretable
- Generate rules
- Supports categorical and numerical data

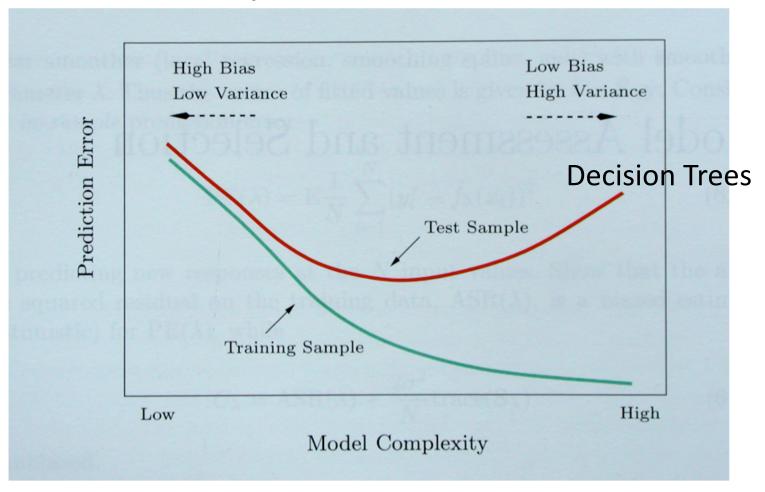
Weaknesses

- Overfitting
- Splitting method might not be optimal
- Accuracy is not always high
- Batch learning

Outline

- Ensemble learning
 - Combine multiple classifiers to reduce model variance and improve accuracy
- Bagging
 - Bootstrap samples
 - Random Forests
- Boosting
 - AdaBoost

Bias/Variance Tradeoff



Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

How to reduce variance of single decision tree?

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

Build Ensemble Classifiers

- Basic idea
 - Build different "experts", and let them vote

Advantages

- Improve predictive performance
- Easy to implement
- No too much parameter tuning

Disadvantages

- The combined classifier is not transparent and interpretable
- Not a compact representation

Practical Applications

Goal: predict how a user will rate a movie

- Based on the user's ratings for other movies
- and other peoples' ratings
- with no other information about the movies

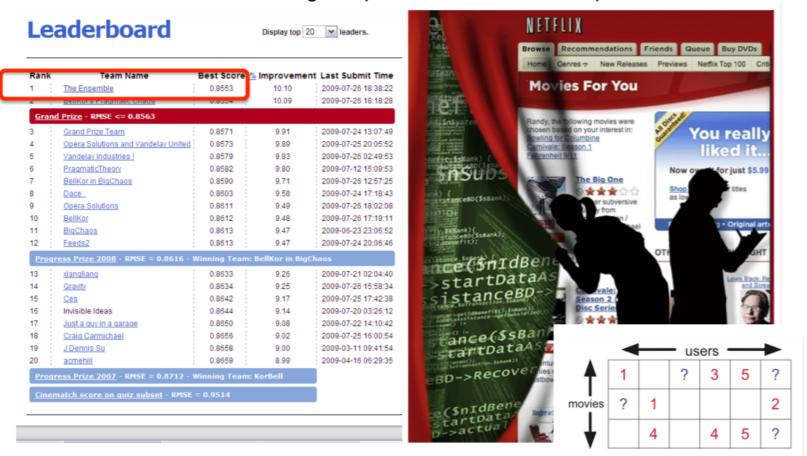
This application is called "collaborative filtering"

Netflix Prize: \$1M to the first team to do 10% better then Netflix' system (2007-2009)

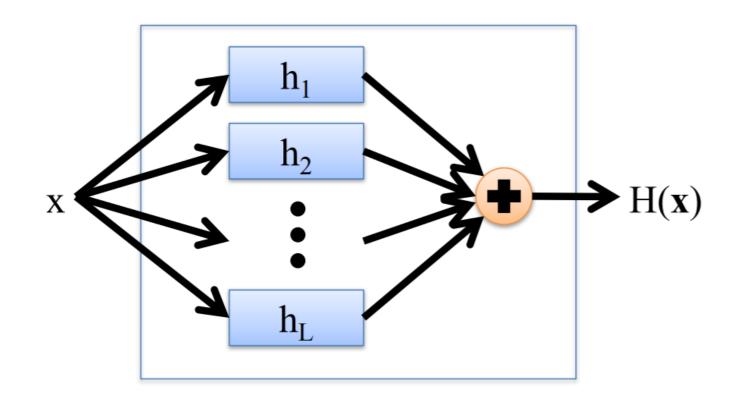
Winner: BellKor's Pragmatic Chaos – an ensemble of more than 800 rating systems

Netflix Prize

Machine learning competition with a \$1 million prize

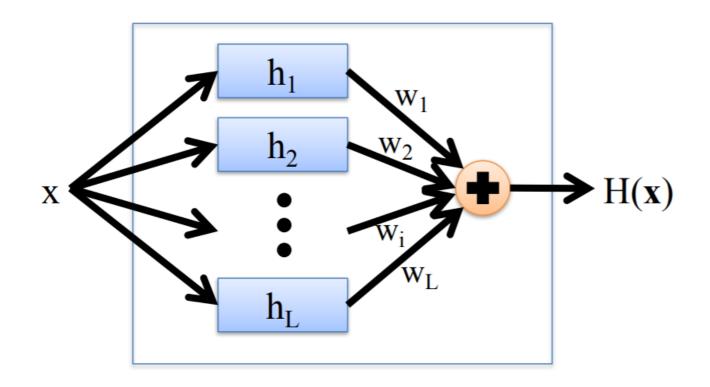


Combining Classifiers: Averaging



Final hypothesis is a simple vote of the members

Combining Classifiers: Weighted Averaging



 Coefficients of individual members are trained using a validation set

Reduce error

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\varepsilon = 0.35$
- Assume independence among classifiers
- Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Reduce Variance

Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$
 (when predictions are independent)

Average models to reduce model variance One problem:

only one training set

where do multiple models come from?

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

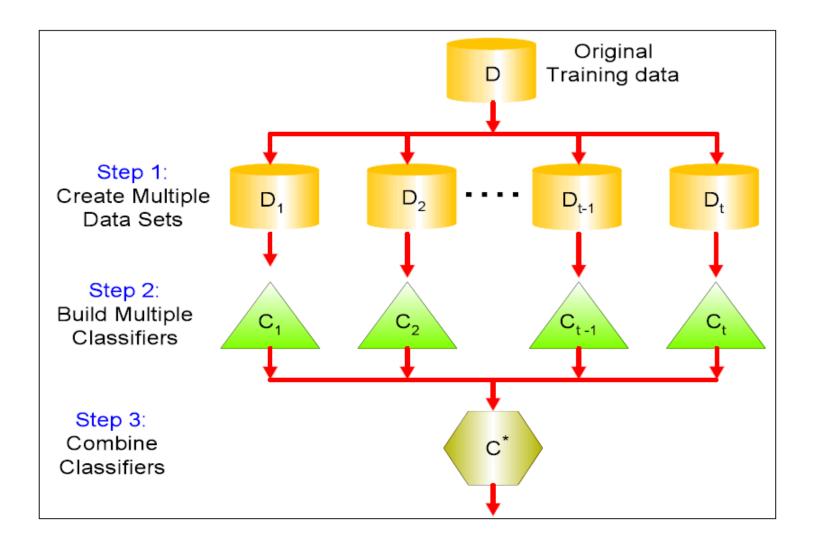
Bagging

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.

Bagging:

- Create k bootstrap samples $D_1 \dots D_k$.
- Train distinct classifier on each D_i .
- Classify new instance by majority vote / average.

General Idea



Example of Bagging

Sampling with replacement

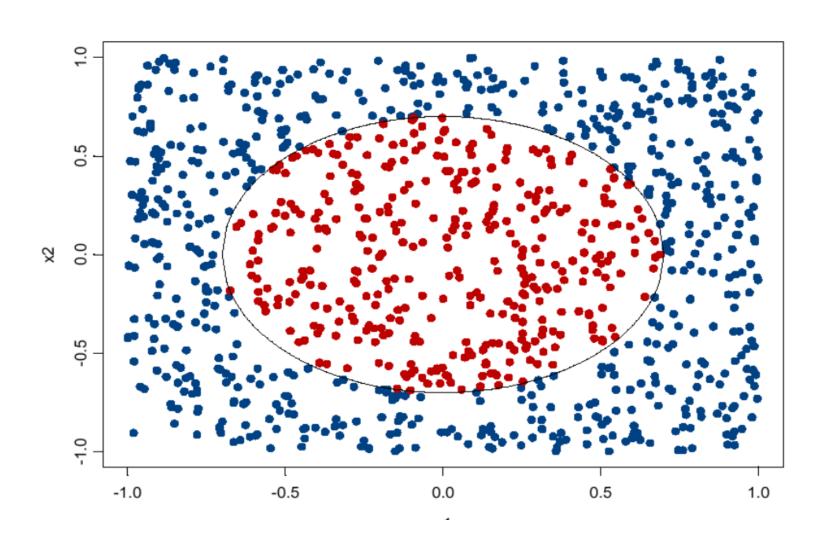
Data ID	Training Data									
Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Sample each training point with probability 1/n
- Out-Of-Bag (OOB) observation: point not in sample
 - For each point: prob (1-1/n)ⁿ
 - About 1/3 of data
 - OOB error: error on OOB samples
- OOB average error
 - Compute across all models in Ensemble
 - Use instead of Cross-Validation error

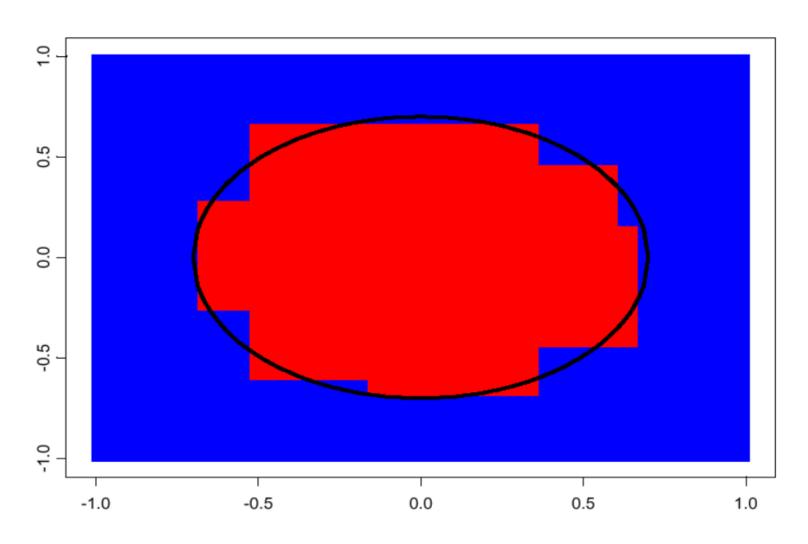
Bagging

- Can be applied to multiple classification models
- Very successful for decision trees
 - Decision trees have high variance
 - Don't prune the individual trees, but grow trees to full extent
 - Precision accuracy of decision trees improved substantially
- OOB average error used instead of Cross Validation

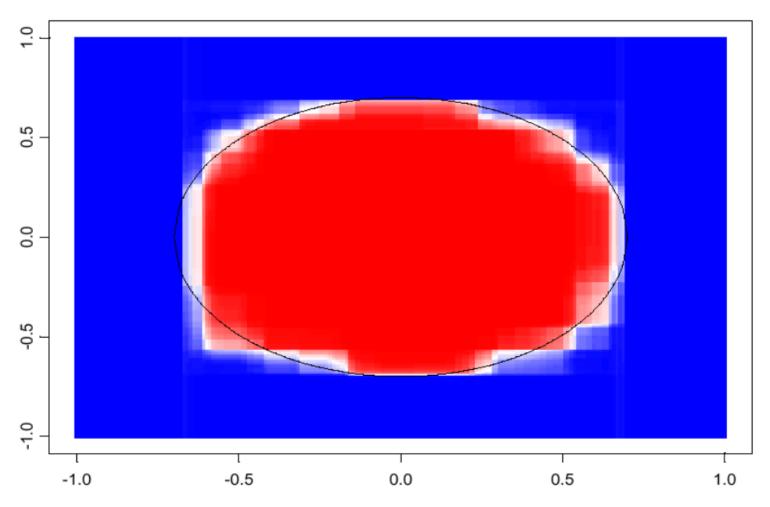
Example Distribution



Decision Tree Decision Boundary



100 Bagged Trees



shades of blue/red indicate strength of vote for particular classification

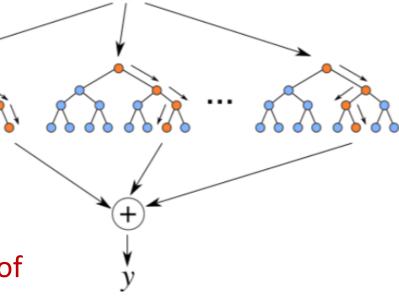
Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of m attributes instead of all attributes

Random Forests

- Construct decision trees on bootstrap replicas
 - Restrict the node decisions to a small subset of features picked randomly for each node
- Do not prune the trees
 - Estimate tree performance on out-of-bootstrap data
- Average the output of all trees (or choose mode decision)

Trees are de-correlated by choice of random subset of features



Random Forest Algorithm

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

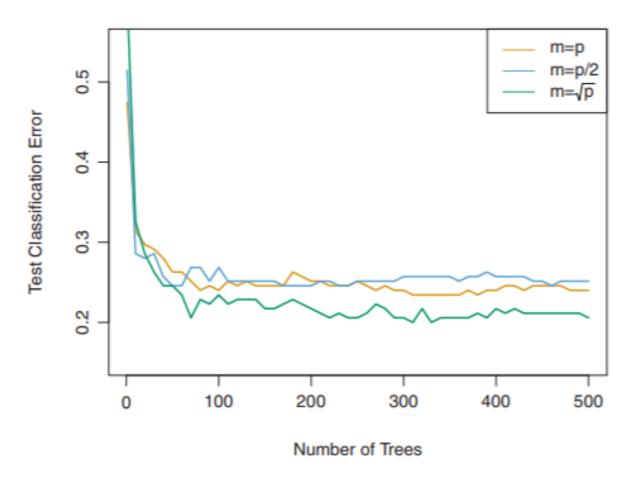
To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\rm rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

If m=p, this is equivalent to Bagging with Decision Trees as base learner

Effect of Number of Predictors



- p = total number of predictors; m = predictors chosen in each split
- Random Forests uses $m = \sqrt{p}$

Variable Importance

- Ensemble of trees looses somewhat interpretability of decision trees
- Which variables contribute mostly to prediction?
- Random Forests computes a Variable Importance metric per feature
 - For each tree in the ensemble, consider the split by the particular feature
 - How much impurity metric decreases after the split
 - Average over all trees

Variable Importance Plots

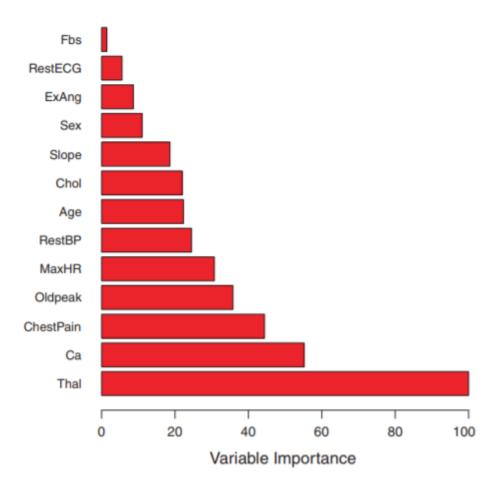


FIGURE 8.9. A variable importance plot for the Heart data. Variable importance is computed using the mean decrease in Gini index, and expressed relative to the maximum.

```
>
> library(randomForest)
> rf.carseats=randomForest(High~.-Sales, Carseats, subset=train, importance=TRUE)
 > rf.carseats
 Call:
 randomForest(formula = High ~ . - Sales, data = Carseats, importance = TRUE, subset = train)
              Type of random forest: classification
                    Number of trees: 500
 No. of variables tried at each split: 3
        OOB estimate of error rate: 18.5%
 Confusion matrix:
     No Yes class.error
 No 104 14 0.1186441
 Yes 23 59 0.2804878
> rf.pred=predict(rf.carseats, Carseats.test, type="class")
> table(rf.pred, High.test)
        High.test
rf.pred No Yes
    No 105 25
    Yes 13 57
> mean(rf.pred==High.test)
[1] 0.81
                                                                                         28
```

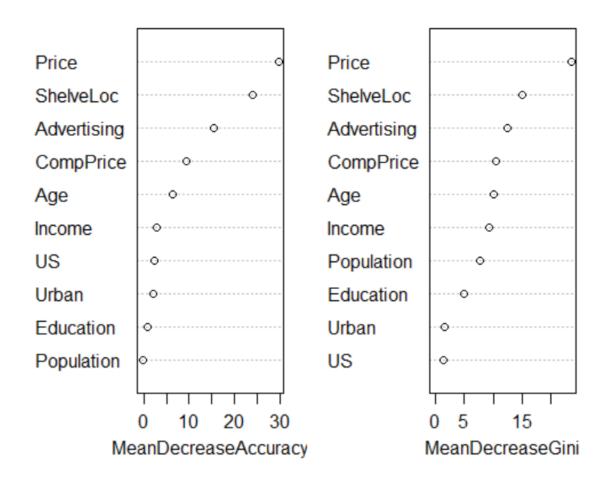
Lab

> importance(rf.carseats,type=2)

	MeanDecreaseGini
CompPrice	10.444114
Income	9.204883
Advertising	12.367002
Population	7.722053
Price	23.437998
ShelveLoc	15.053694
Age	10.135102
Education	4.879102
Urban	1.585268
US	1.369725

Lab

```
> varImpPlot(rf.carseats)
>
```



How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

- A meta-learning algorithm with great theoretical and empirical performance
- Turns a base learner (i.e., a "weak hypothesis") into a high performance classifier
- Creates an ensemble of weak hypotheses by repeatedly emphasizing mispredicted instances

Adaptive Boosting Freund and Schapire 1997

Overview of AdaBoost

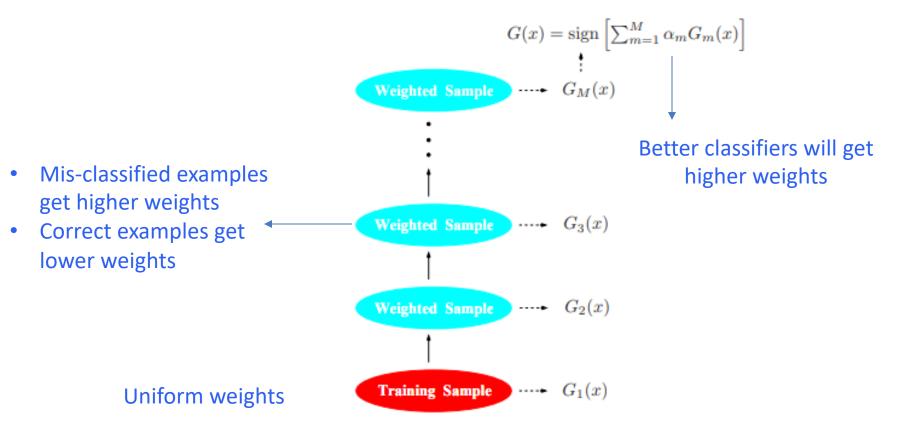


FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

Boosting [Shapire '89]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a weak hypothesis h_t
 - A strength for this hypothesis α_t
- Final classifier: $H(X) = sign(\sum \alpha_t h_t(X))$

Convergence bounds with minimal assumptions on weak learner

If each weak learner h_t is slightly better than random guessing (ε_t < 0.5), then training error of AdaBoost decays exponentially fast in number of rounds T.

Power of Boosting

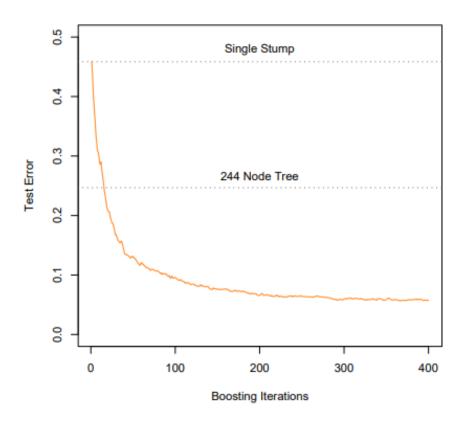


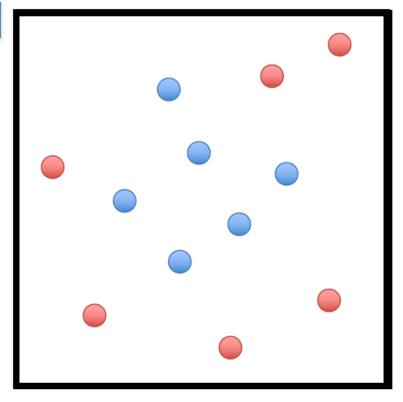
FIGURE 10.2. Simulated data (10.2): test error rate for boosting with stumps, as a function of the number of iterations. Also shown are the test error rate for a single stump, and a 244-node classification tree.

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



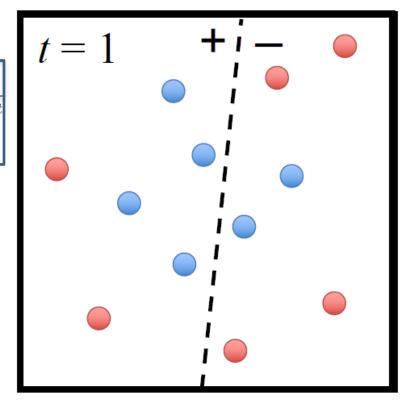
Size of point represents the instance's weight

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



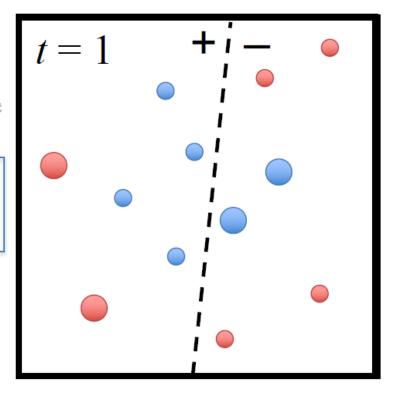
- β_t measures the importance of h_t
- If $\epsilon_t \leq 0.5$, then $\beta_t \geq 0$ (can trivially guarantee)

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



- Weights of correct predictions are multiplied by $\,e^{-eta_t} \le 1\,$
- Weights of incorrect predictions are multiplied by $\,e^{eta_t} \geq 1\,$

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!