DS 4400

Machine Learning and Data Mining I

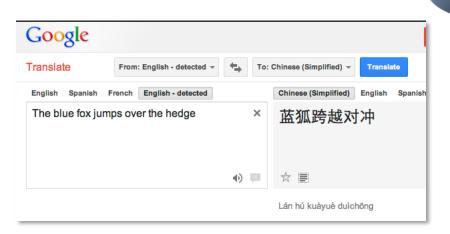
Alina Oprea
Associate Professor, CCIS
Northeastern University

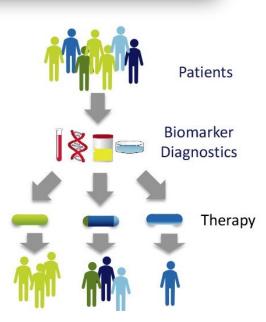
October 23 2019

Midterm Review

Machine learning is everywhere







What we covered so far

Linear classification

- Perceptron
- Logistic regression
- LDA

Non-linear classification

- kNN
- Decision trees
- Naïve Bayes

- Metrics
- Cross-validation
- Regularization
- Feature selection
- Gradient Descent
- Maximum Likelihood Estimation (MLE)

Linear Regression

Linear algebra

Probability and statistics

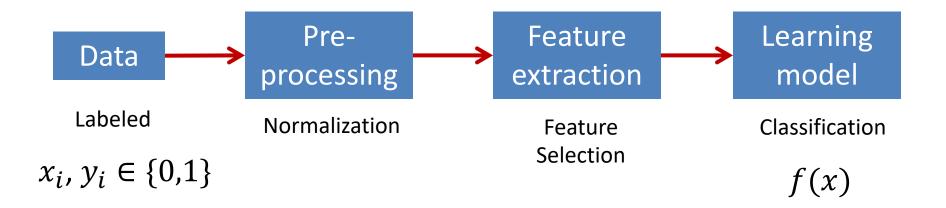
Terminology

- Hypothesis space $H = \{f: X \to Y\}$
- Training data $D = (x_i, y_i) \in X \times Y$
- Features: $x_i \in X$
- Labels / response variables $y_i \in Y$
 - Classification: discrete $y_i \in \{0,1\}$
 - Regression: $y_i \in R$
- Loss function: L(f, D)
 - Measures how well f fits training data
- Training algorithm: Find hypothesis $\hat{f}: X \to Y$

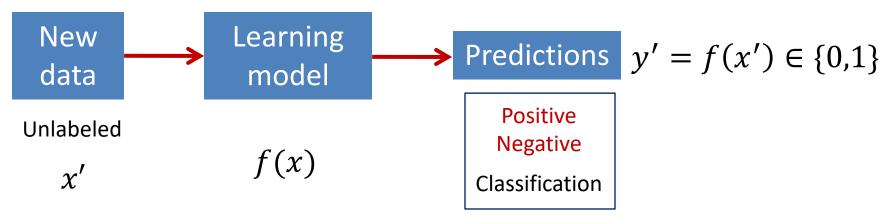
$$-\hat{f} = \underset{f \in H}{\operatorname{argmin}} L(f, D)$$

Supervised Learning: Classification

Training

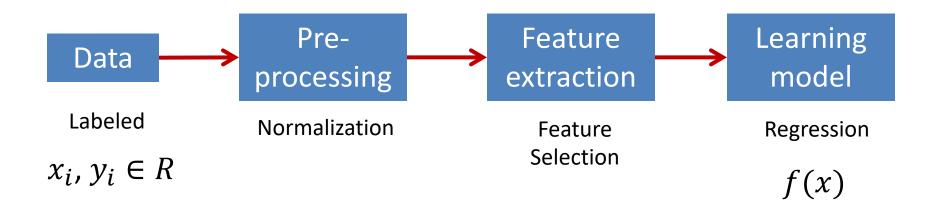


Testing

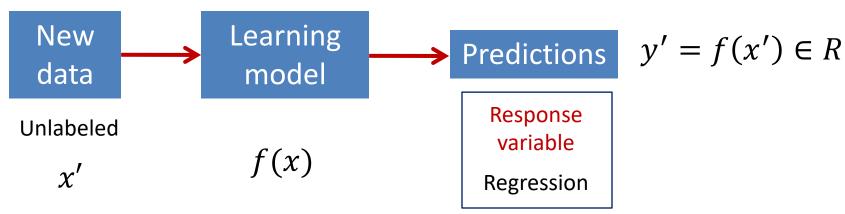


Supervised Learning: Regression

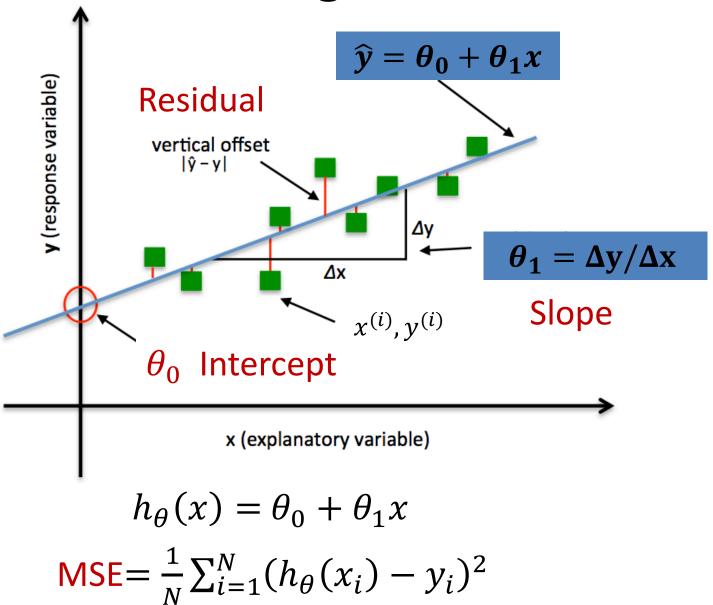
Training



Testing



Linear Regression

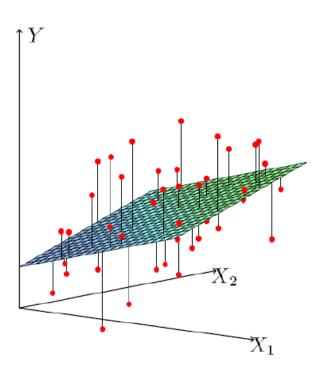


Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$

• MSE =
$$\frac{1}{N}\sum (\theta^T x_i - y_i)^2$$
 Loss / cost

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$



Maximum Likelihood Estimation (MLE)

Given training data $X = \{x_1, ..., x_N\}$ with labels $Y = \{y_1, ..., y_N\}$

What is the likelihood of training data for parameter θ ?

Define likelihood function

$$Max_{\theta} L(\theta) = P[Y|X;\theta] = f(y_1, \dots, y_N | x_1, \dots, x_N; \theta)$$

Assumption: training points are independent!

$$L(\theta) = \prod_{i=1}^{N} P[y_i | x_i; \theta]$$

MLE for Linear Regression

$$L(\theta) = \prod_{i=1}^{N} P[y_i|x_i;\theta] = \prod_{i=1}^{N} f(y_i|x_i;\theta,\sigma)$$

$$\log L(\theta) = -c \sum_{i=1}^{N} [y_i - (\theta_0 + \theta_1 x_i)]^2$$

Max likelihood θ is the same as Min MSE θ ! The MSE metric has statistical motivation

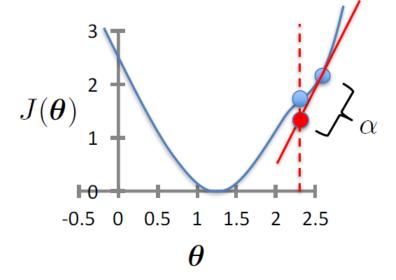
Gradient Descent

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

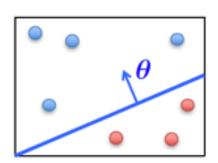
learning rate (small) e.g., $\alpha = 0.05$



Gradient = slope of line tangent to curve at the same point

Linear Classifiers

Linear classifiers: represent decision boundary by hyperplane



$$h_{\theta}(x) = f(\theta^T x)$$
 linear function

- If $\theta^T x > 0$ classify 1
- If $\theta^T x < 0$ classify 0

All the points x on the hyperplane satisfy: $\theta^T x = 0$

The Perceptron

$$h(x) = \operatorname{sign}(\theta^{\mathsf{T}} x)$$
 where $\operatorname{sign}(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$

• The perceptron uses the following update rule each time it receives a new training instance (x_i, y_i)

$$\theta_j \leftarrow \theta_j - \frac{1}{2} (h_{\theta}(x_i) - y_i) x_{ij}$$
either 2 or -2

- If the prediction matches the label, make no change
- Otherwise, adjust heta

The Perceptron

• The perceptron uses the following update rule each time it receives a new training instance (x_i, y_i)

$$\theta_j \leftarrow \theta_j - \frac{1}{2} (h_{\theta}(x_i) - y_i) x_{ij}$$
either 2 or -2

• Re-write as

$$\theta_j \leftarrow \theta_j + y_i x_{ij}$$

(only upon misclassification)

Perceptron Rule: If x_i is misclassified, do $\theta \leftarrow \theta + y_i x_i$

Online Perceptron

```
Let \theta \leftarrow [0,0,...,0]
Repeat:
Receive training example (x_i,y_i)
If y_i\theta^Tx_i \leq 0 // prediction is incorrect \theta \leftarrow \theta + y_i x_i
```

Online learning – the learning mode where the model update is performed each time a single observation is received

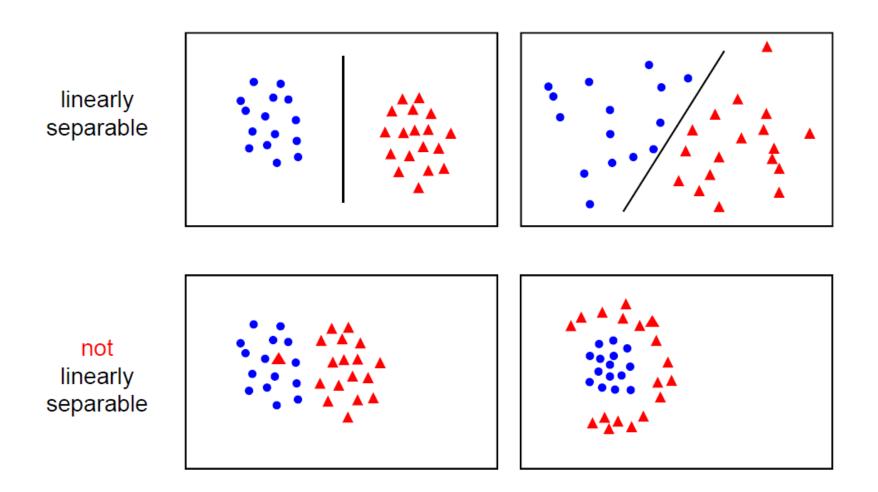
Batch learning – the learning mode where the model update is performed after observing the entire training set

Batch Perceptron

```
Given training data \{(x_i, y_i)\}_{i=1}^n
Let \boldsymbol{\theta} \leftarrow [0, 0, \dots, 0]
Repeat:
         Let \Delta \leftarrow [0, 0, \dots, 0]
         for i = 1 \dots n, do
                if y_i \theta^T x_i \leq 0 // prediction for i<sup>th</sup> instance is incorrect
                        \Delta \leftarrow \Delta + y_i x_i
         \Delta \leftarrow \Delta/n
                                                           // compute average update
         	heta \leftarrow 	heta + \Delta
Until \|\mathbf{\Delta}\|_2 < \epsilon
```

Guaranteed to find separating hyperplane if data is linearly separable

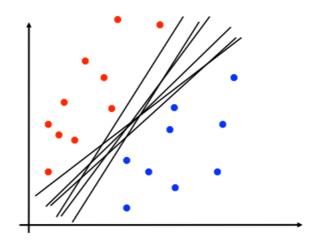
Linear separability



 For linearly separable data, can prove bounds on perceptron error (depends on how well separated the data is)

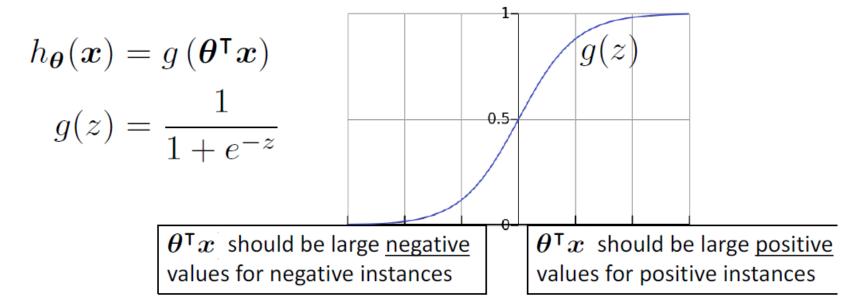
Perceptron Limitations

- Is dependent on starting point
- It could take many steps for convergence
- Perceptron can overfit
 - Move the decision boundary for every example

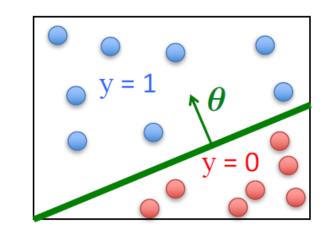


Which of this is optimal?

Logistic Regression



- Assume a threshold and...
 - Predict y = 1 if $h_{\theta}(x) \ge 0.5$
 - Predict y = 0 if $h_{m{ heta}}(m{x}) < 0.5$



Logistic Regression is a linear classifier!

LDA

- Classify to one of k classes
- Logistic regression computes directly
 - -P[Y=1|X=x]
 - Assume sigmoid function
- LDA uses Bayes Theorem to estimate it

$$-P[Y = k | X = x] = \frac{P[X = x | Y = k]P[Y = k]}{P[X = x]}$$

- Let $\pi_k = P[Y = k]$ be the prior probability of class k and $f_k(x) = P[X = x | Y = k]$

LDA

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}.$$

Assume $f_k(x)$ is Gaussian! Unidimensional case (d=1)

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}.$$

Assumption: $\sigma_1 = ... \sigma_k = \sigma$

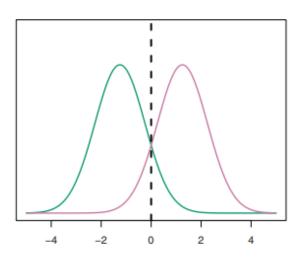
LDA decision boundary

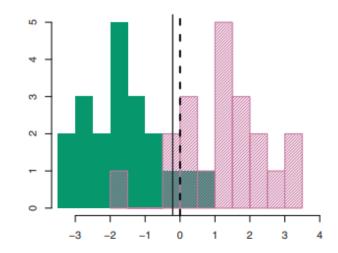
Pick class k to maximize

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Example: $k = 2, \pi_1 = \pi_2$

Classify as class 1 if $x > \frac{\mu_1 + \mu_2}{2}$





True decision boundary

Estimated decision boundary

LDA

Given training data (x_i, y_i) , $i = 1, ..., N, y_i \in \{1, ..., K\}$

1. Estimate mean and variance

$$\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i:y_{i}=k} x_{i}$$

$$\hat{\sigma}^{2} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:y_{i}=k} (x_{i} - \hat{\mu}_{k})^{2}$$

2. Estimate prior

$$\hat{\pi}_k = n_k/n.$$

Given testing point x, predict k that maximizes:

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

Multi-variate LDA

Given training data (x_i, y_i) , $i = 1, ..., n, y_i \in \{1, ..., K\}$

1. Estimate mean

and variance

- $\hat{\pi}_k = N_k/N$, where N_k is the number of class-k observations;
- $\hat{\mu}_k = \sum_{g_i=k} x_i/N_k$;
- $\hat{\Sigma} = \sum_{k=1}^{K} \sum_{g_i=k} (x_i \hat{\mu}_k)(x_i \hat{\mu}_k)^T / (N K).$

2. Estimate prior

Given testing point x, predict k that maximizes:

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

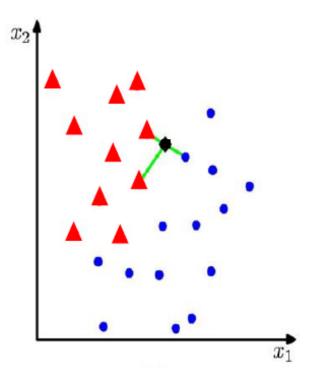
K Nearest Neighbour (K-NN) Classifier

Algorithm

- For each test point, x, to be classified, find the K nearest samples in the training data
- Classify the point, x, according to the majority vote of their class labels

e.g.
$$K = 3$$

 applicable to multi-class case



Naïve Bayes Classifier

Idea: Use the training data to estimate

$$P(X \mid Y)$$
 and $P(Y)$.

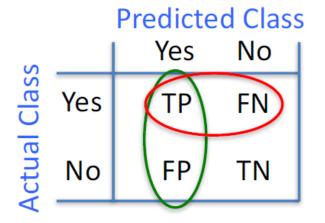
Then, use Bayes rule to infer $P(Y|X_{\mathrm{new}})$ for new data

$$P[Y=k|X=x] = \begin{bmatrix} \text{Easy to estimate} \\ \text{from data} & \text{Impractical, but necessary} \\ P[Y=k]P[X_1=x_1 \land \cdots \land X_d=x_d|Y=k] \\ P[X_1=x_1 \land \cdots \land X_d=x_d] \end{bmatrix}$$
Unnecessary, as it turns out

• Recall that estimating the joint probability distribution $P(X_1, X_2, \dots, X_d \mid Y)$ is not practical

Confusion Matrix

Given a dataset of P positive instances and N negative instances:



$$accuracy = \frac{TP + TN}{P + N}$$

Imagine using classifier to identify positive cases (i.e., for information retrieval)

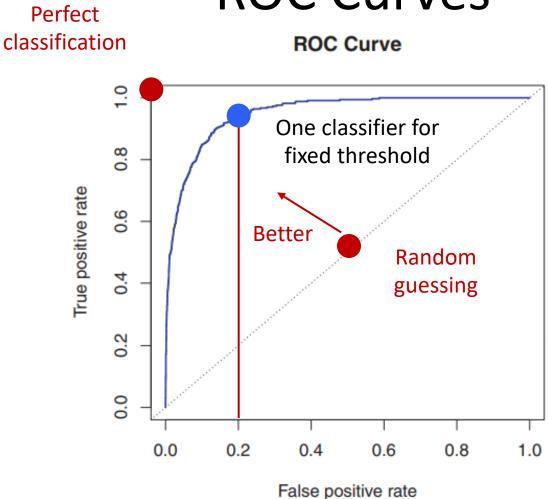
$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

Probability that classifier predicts positive correctly

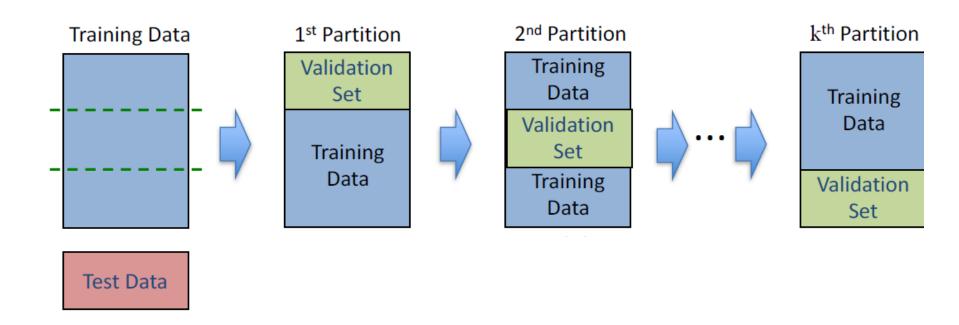
Probability that actual class is predicted correctly

ROC Curves



- Receiver Operating Characteristic (ROC)
- Determine operating point (e.g., by fixing false positive rate)

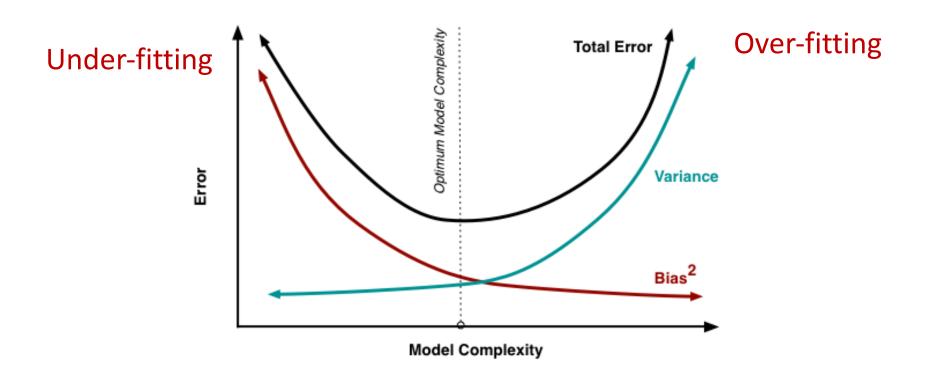
Cross Validation



k-fold CV

- Split training data into k partitions (folds) of equal size
- Pick the optimal value of hyper-parameter according to error metric averaged over all folds

Bias-Variance Tradeoff



- Bias = Difference between estimated and true models
- Variance = Model difference on different training sets

Regularization

 A method for controlling the complexity of learned hypothesis

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$
 Ridge

$$J(\theta) = \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2 + \lambda \sum_{j=1}^{d} |\theta_j|$$
 LASSO Squared Regularization Residuals

Type I: Conceptual

- Example 1: Describe difference between classification and regression
- Example 2: List one technique that can be used to improve model generality
- Example 3: Why do we need multiple metrics to evaluate classifiers
- Example 4: Provide advantages and disadvantages of:
 - Linear classifiers compared to more complex ones

More Examples

(a) [3 points]

Alice trains a classifier using a training dataset D and reports training error of 0.00001%. However, when Alice applies her classifier to testing data T, the error is 10.5%. What is the likely cause of Alice's problem?

Answer:

(b) [3 points] After taking DS 5220 describe some advice you would give Alice to solve her problem.

Answer:

Type II: Pseudocode

- Example 1: Write pseudocode for kNN
- Example 2: Write pseudocode for perceptron
- Example 3: Write pseudocode for ...

Type III: Computational

- Example 1: Given a dataset, train a particular ML model
 - E.g., kNN, Naïve Bayes etc.
 - Evaluate model on some simple training and testing data
- Example 2: Given a dataset, compute some metrics / loss function
- Example 3: How many parameters does a model need to store?