DS 5220

Supervised Machine Learning and Learning Theory

Alina Oprea
Associate Professor, CCIS
Northeastern University

Methods for Feature Selection

Wrappers

- Select subset of features that gives best prediction accuracy (using cross-validation)
- Model-specific

Filters

- Compute some statistical metrics (correlation coefficient, mutual information)
- Select features with statistics higher than threshold

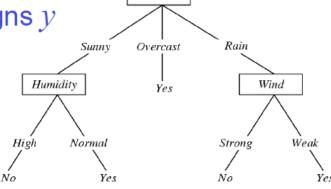
Embedded methods

- Feature selection done as part of training
- Example: Regularization (Lasso, L1 regularization)

Decision Tree Learning

Problem Setting:

- Set of possible instances X
 - each instance x in X is a feature vector
 - e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>
- Unknown target function f: X→Y
 - Y is discrete valued
- Set of function hypotheses $H = \{ h \mid h : X \rightarrow Y \}$
 - each hypothesis h is a decision tree
 - trees sorts x to leaf, which assigns y



Outlook

Slide by Tom Mitchell

Learning Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Information Gain

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

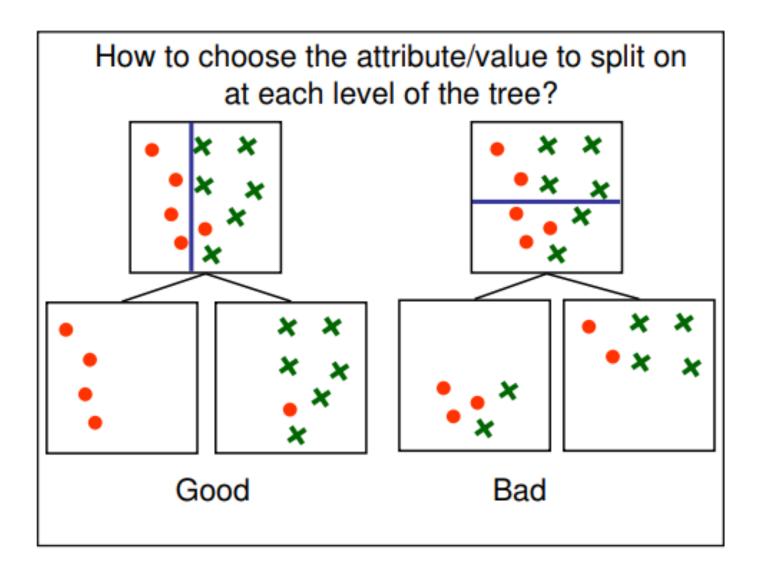
IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

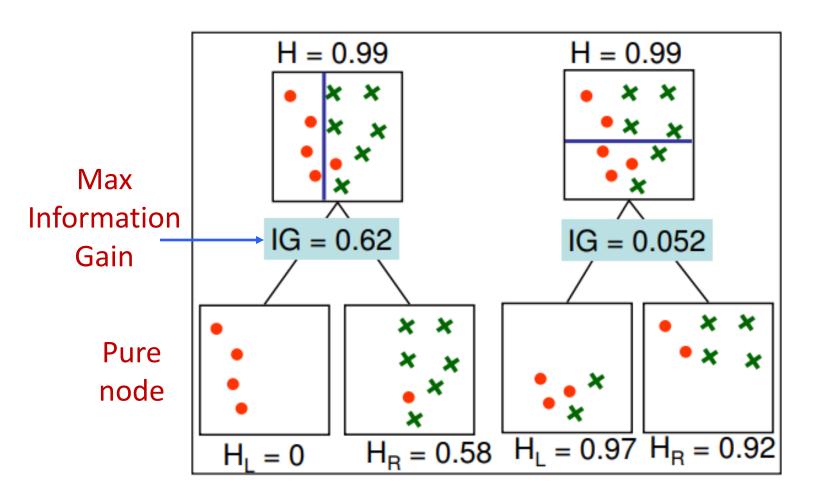
Example:

- $\bullet \ \ \mathsf{H}(\mathsf{Y}) = \mathbf{1}$
- H(Y|X) = 0.5
- Thus IG(Y|X) = 1 0.5 = 0.5

Example



Example Information Gain



Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

Impurity Metrics

- Split a node according to max reduction of impurity
- Properties
 - Impurity measure should be maximum when labels are split evenly among classes: $I\left(\frac{1}{2},\frac{1}{2}\right)=1$
 - Impurity measure should be minimum for pure node: I(1,0) = I(0,1) = 0
 - Impurity measure should be symmetric
 - $I(p_0, p_1) = I(p_1, p_0)$

Impurity Metrics

Split a node according to max reduction of impurity

- 1. Entropy
- 2. Gini Index for binary class (class 0 and class 1)

$$-I(p_0, p_1) = 4p_0p_1 = 4p_0(1 - p_0)$$

- 3. Resubstitution error
 - Fraction of data points mis-classified if we assigned the majority label at the node

Impurity Metrics

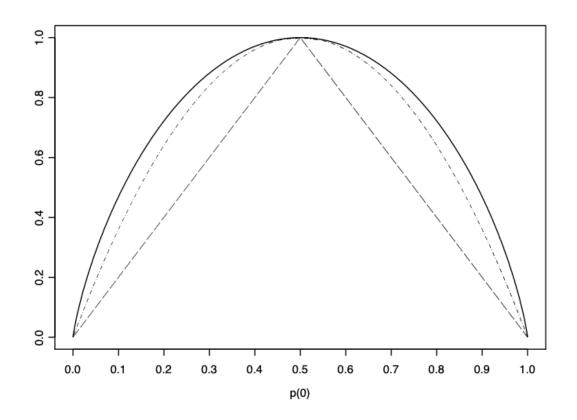
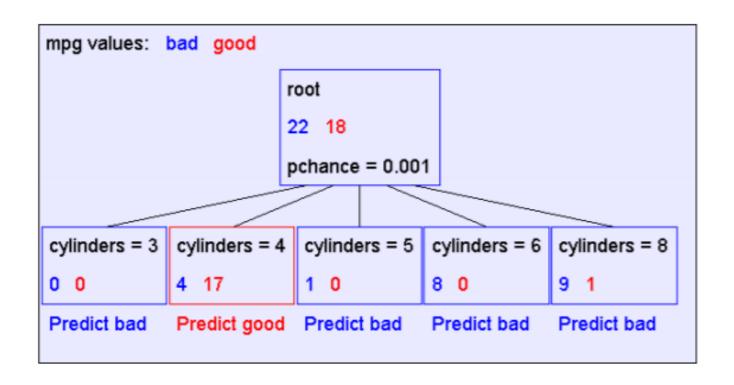


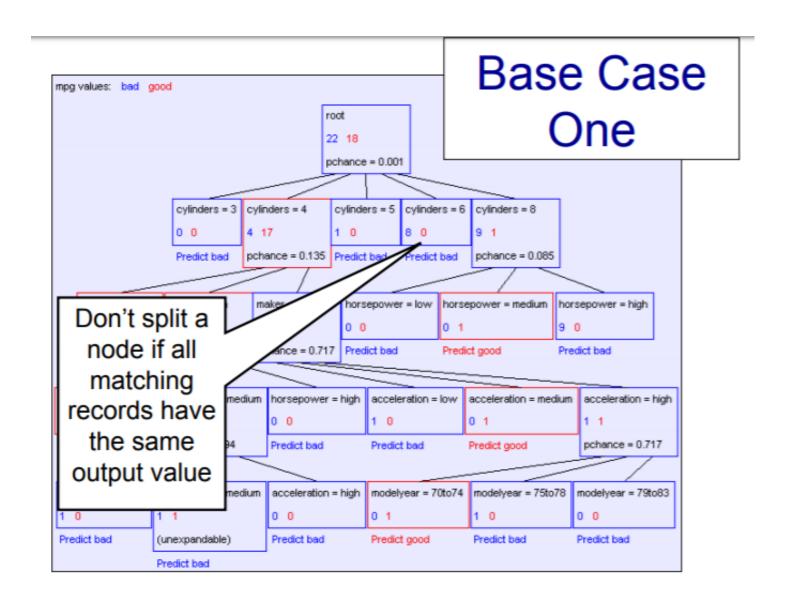
Figure 4: Graph of entropy (solid line), gini-index (dot-dash) and resubstitution error (dashed line) for two-class problem.

When to stop?

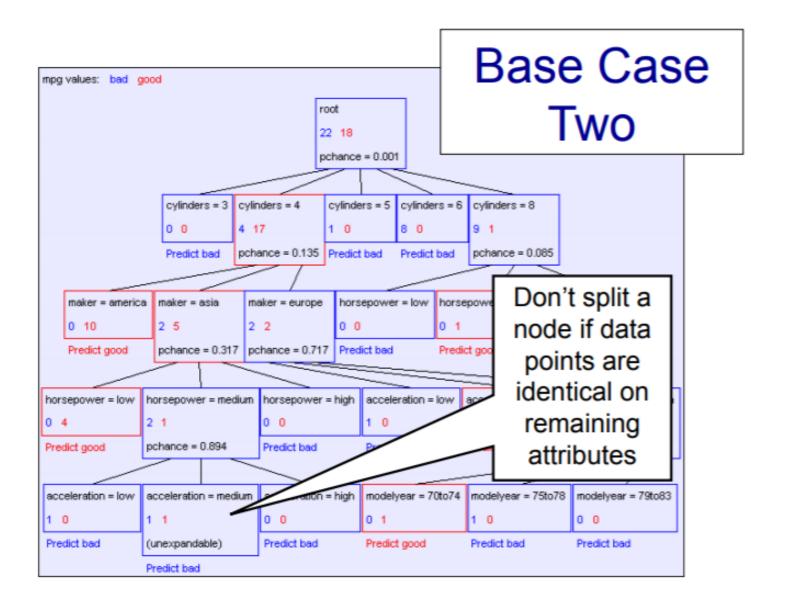


First split looks good! But, when do we stop?

Case 1



Case 2



Decision Trees

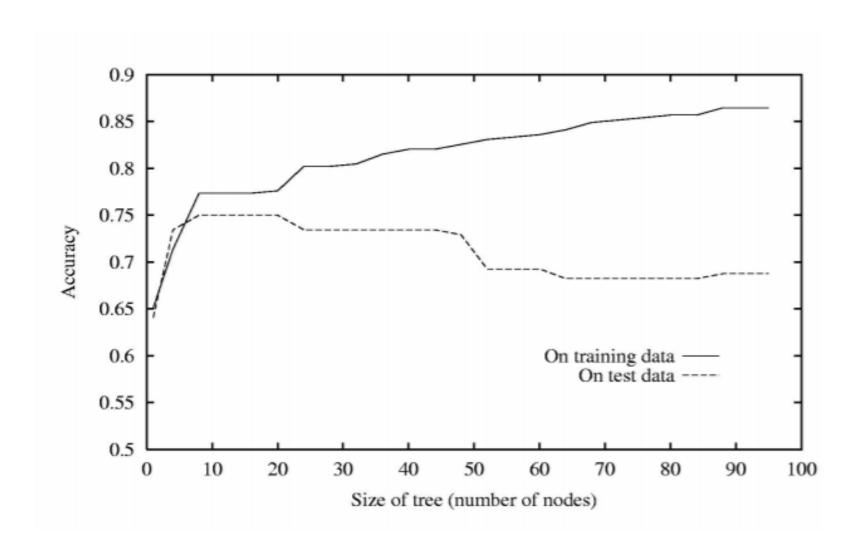
BuildTree(DataSet,Output)

- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create a non-leaf node with n_x children.
 - The i'th child should be built by calling

BuildTree(*DS_i*,*Output*)

Where DS_i contains the records in DataSet where X = ith value of X.

Overfitting



Solutions against Overfitting

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Minimum number of samples per leaf
- Pruning

Pruning Decision Trees

Split data into training and validation sets

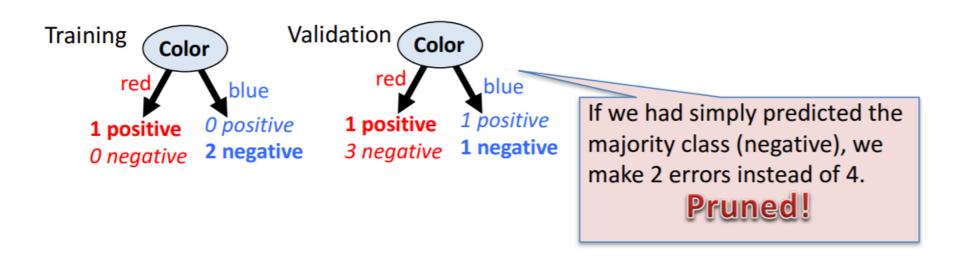
Grow tree based on training set

Do until further pruning is harmful:

- Evaluate impact on validation set of pruning each possible node (plus those below it)
- Greedily remove the node that most improves validation set accuracy

Pruning Decision Trees

- Pruning of the decision tree is done by replacing a whole subtree by a leaf node.
- The replacement takes place if a decision rule establishes that the expected error rate in the subtree is greater than in the single leaf.
- For example,



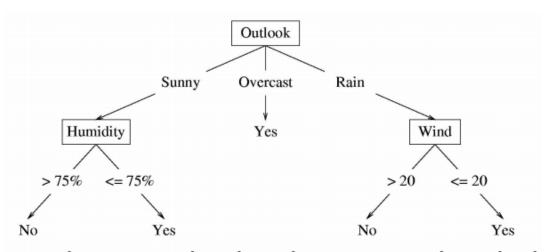
Real-Valued Inputs

What should we do if some of the inputs are real-valued?

Infinite number of possible split values!!!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Real-valued Features

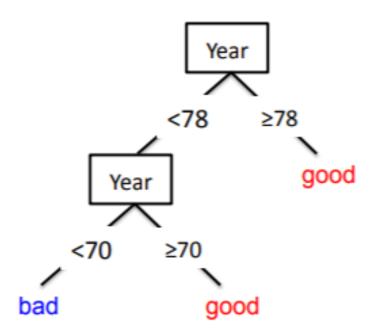


- Change to binary splits by choosing a threshold
- One method:
 - Sort instances by value, identify adjacencies with different classes

Choose among splits by InfoGain()

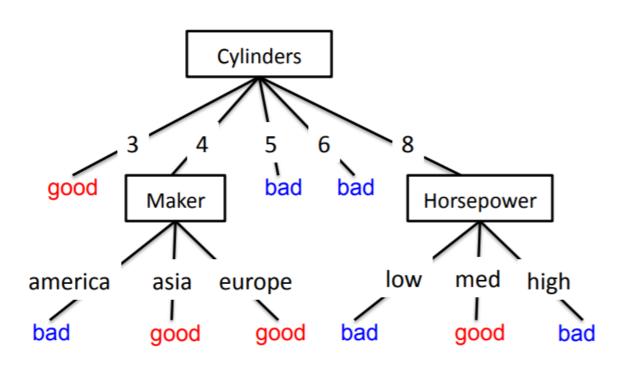
Threshold Splits

- Binary tree: split on attribute X at value t
 - One branch: X < t</p>
 - Other branch: X ≥ t
- Requires small change
 - Allow repeated splits on same variable along a path



Interpretability

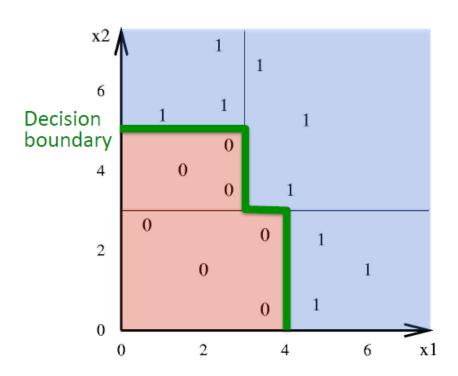
- Each internal node tests an attribute x_i
- One branch for each possible attribute value x_i=v
- Each leaf assigns a class y
- To classify input x: traverse the tree from root to leaf, output the labeled y

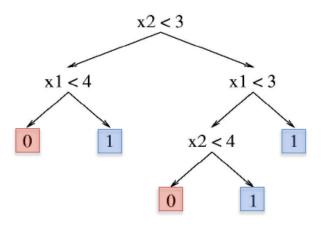


Human interpretable!

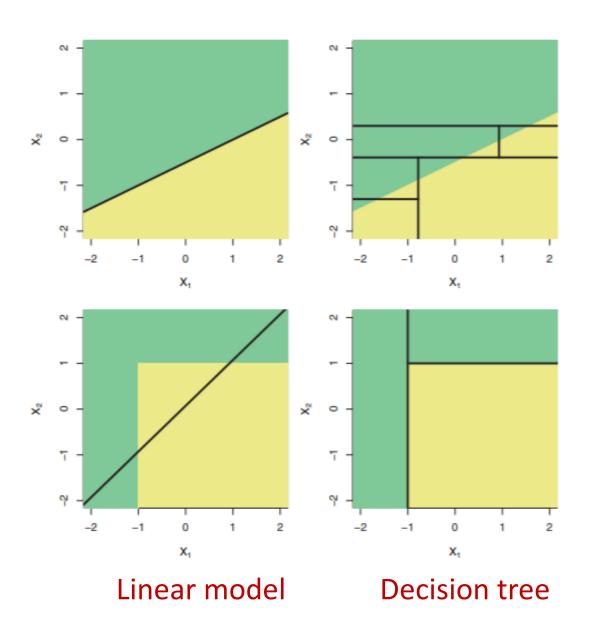
Decision Boundary

- Decision trees divide the feature space into axisparallel (hyper-)rectangles
- Each rectangular region is labeled with one label
 - or a probability distribution over labels





Decision Trees vs Linear Models



-

- > library(tree)
- > library(ISLR)
- > fix(Carseats)

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age
1	9.5	138	73	11	276	120	Bad	42
2	11.22	111	48	16	260	83	Good	65
3	10.06	113	35	10	269	80	Medium	59
4	7.4	117	100	4	466	97	Medium	55
5	4.15	141	64	3	340	128	Bad	38
6	10.81	124	113	13	501	72	Bad	78
7	6.63	115	105	0	45	108	Medium	71
8	11.85	136	81	15	425	120	Good	67
9	6.54	132	110	0	108	124	Medium	76
10	4.69	132	113	0	131	124	Medium	76
11	9.01	121	78	9	150	100	Bad	26
12	11.96	117	94	4	503	94	Good	50
13	3.98	122	35	2	393	136	Medium	62
14	10.96	115	28	11	29	86	Good	53
15	11.17	107	117	11	148	118	Good	52

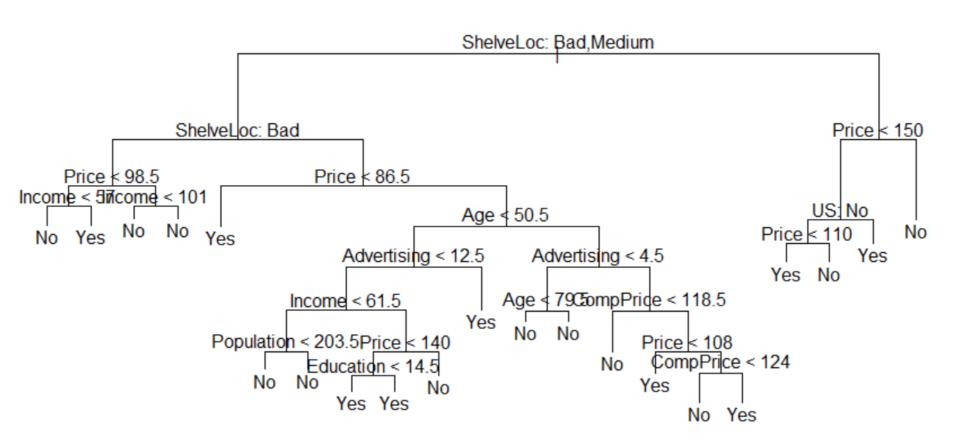
Add Label "High" is Sales > 8

```
> High=ifelse(Sales<=8,"No","Yes")</pre>
> Carseats=data.frame(Carseats, High)
> head(Carseats)
  Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US High
1 9.50
              138
                      73
                                  11
                                            276
                                                  120
                                                             Bad 42
                                                                            17
                                                                                 Yes Yes
                                                                                          Yes
2 11.22
              111
                      48
                                  16
                                            260
                                                    83
                                                            Good 65
                                                                                 Yes Yes
                                                                                          Yes
                                                                            10
3 10.06
              113
                      35
                                  10
                                            269
                                                   80
                                                         Medium 59
                                                                            12
                                                                                 Yes Yes
                                                                                         Yes
4 7.40
              117
                     100
                                   4
                                            466
                                                   97
                                                         Medium 55
                                                                            14
                                                                                 Yes Yes
                                                                                           No
5 4.15
              141
                      64
                                   3
                                            340
                                                  128
                                                             Bad
                                                                  38
                                                                            13
                                                                                 Yes No
                                                                                           No
6 10.81
              124
                     113
                                  13
                                            501
                                                    72
                                                             Bad
                                                                  78
                                                                            16
                                                                                  No Yes Yes
```

Train and Test

```
> train=sample(1:nrow(Carseats), 200)
> Carseats.test=Carseats[-train,]
> High.test=High[-train]
> tree.carseats=tree(High~.-Sales, Carseats, subset=train)
> tree.pred=predict(tree.carseats, Carseats.test, type="class")
> table(tree.pred,High.test)
         High.test
tree.pred No Yes
      No 85 22
      Yes 34 59
 mean(tree.pred==High.test)
                                 Accuracy
[1] 0.72
```

```
> plot(tree.carseats)
> text(tree.carseats,pretty=0)
>
```



> tree.carseats node), split, n, deviance, yval, (yprob) * denotes terminal node 1) root 200 271.500 No (0.58500 0.41500) 2) ShelveLoc: Bad, Medium 157 196.500 No (0.68153 0.31847) 4) ShelveLoc: Bad 46 31.630 No (0.89130 0.10870) 8) Price < 98.5 13 16.050 No (0.69231 0.30769) 16) Income < 57 6 0.000 No (1.00000 0.00000) * 17) Income > 57 7 9.561 Yes (0.42857 0.57143) * 9) Price > 98.5 33 8.962 No (0.96970 0.03030) 19) Income > 101 5 5.004 No (0.80000 0.20000) * 5) ShelveLoc: Medium 111 149.900 No (0.59459 0.40541) 10) Price < 86.5 7 0.000 Yes (0.00000 1.00000) * 11) Price > 86.5 104 136.500 No (0.63462 0.36538) 22) Age < 50.5 47 64.620 Yes (0.44681 0.55319) 44) Advertising < 12.5 37 50.620 No (0.56757 0.43243) 88) Income < 61.5 17 12.320 No (0.88235 0.11765) 176) Population < 203.5 5 6.730 No (0.60000 0.40000) * 177) Population > 203.5 12 0.000 No (1.00000 0.00000) * 89) Income > 61.5 20 24.430 Yes (0.30000 0.70000) 178) Price < 140 15 11.780 Yes (0.13333 0.86667) 356) Education < 14.5 10 0.000 Yes (0.00000 1.00000) 357) Education > 14.5 5 6.730 Yes (0.40000 0.60000) * 179) Price > 140 5 5.004 No (0.80000 0.20000) * 23) Age > 50.5 57 58.670 No (0.78947 0.21053) 46) Advertising < 4.5 31 8.835 No (0.96774 0.03226) 92) Age < 79.5 25 0.000 No (1.00000 0.00000) * 93) Age > 79.5 6 5.407 No (0.83333 0.16667) * 47) Advertising > 4.5 26 35.430 No (0.57692 0.42308) 94) CompPrice < 118.5 9 0.000 No (1.00000 0.00000) *

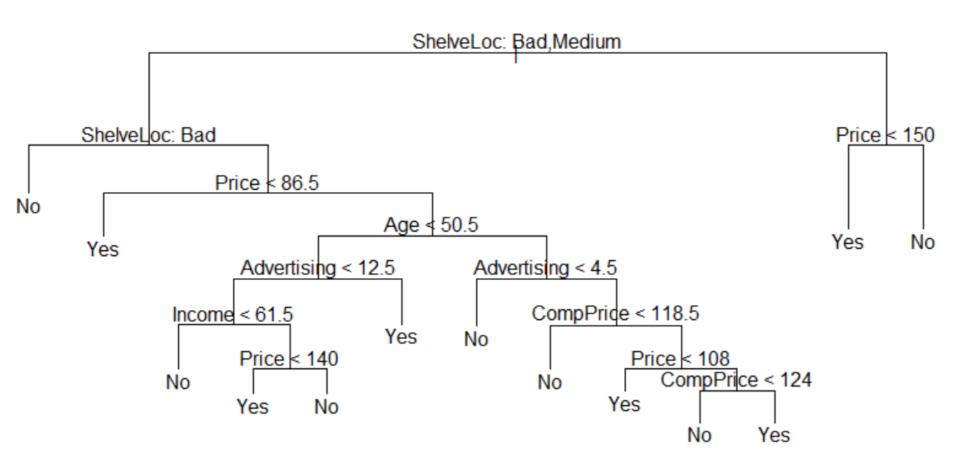
95) CompPrice > 118.5 17 22.070 Yes (0.35294 0.64706)

Pruning

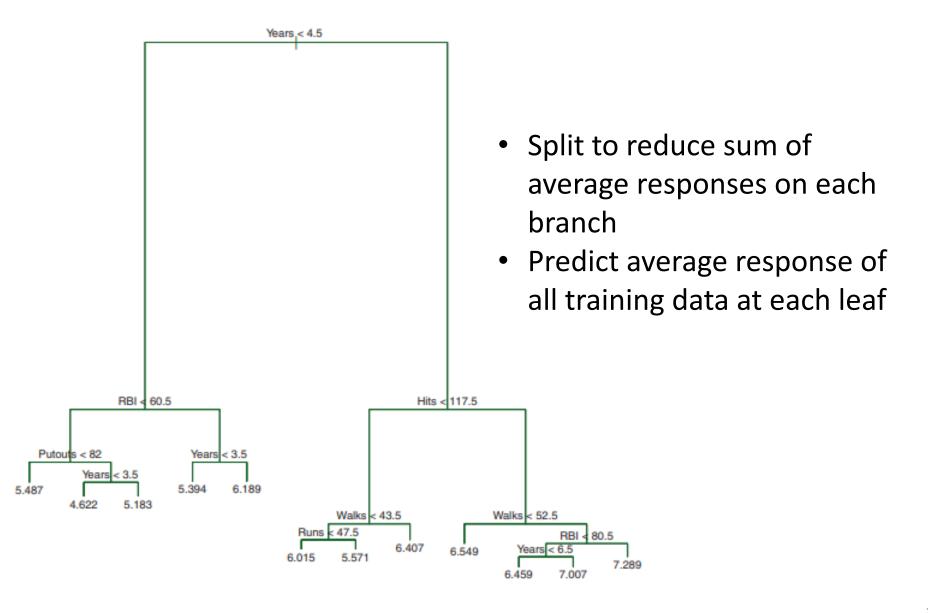
```
> set.seed(3)
> cv.carseats=cv.tree(tree.carseats,FUN=prune.misclass)
> prune.carseats=prune.misclass(tree.carseats,best=12)
> plot(prune.carseats)
> text(prune.carseats,pretty=0)
```

- Cross-validation for pruning
- FUN = prune.misclass indicates that classification error is metric to minimize

Pruning



Regression Trees



Summary Decision Trees

Representation: decision trees

Bias: prefer small decision trees

Search algorithm: greedy

Heuristic function: information gain or information

content or others

Overfitting / pruning

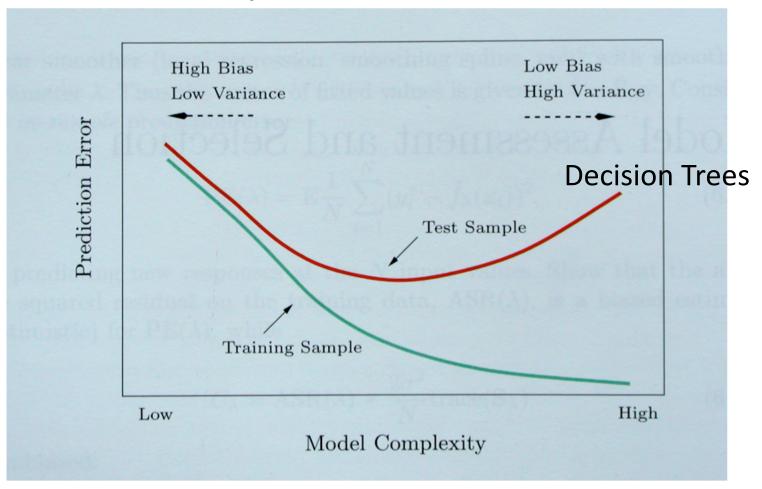
Strengths

- Fast to evaluate
- Interpretable
- Generate rules
- Supports categorical and numerical data

Weaknesses

- Overfitting
- Splitting method might not be optimal
- Accuracy is not always high
- Batch learning

Bias/Variance Tradeoff



Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

How to reduce variance of single decision tree?

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!