DS 5220

Supervised Machine Learning and Learning Theory

Alina Oprea
Associate Professor, CCIS
Northeastern University

Logistics

- HW 3 is on Piazza, due on Oct. 25
- Exams
 - Midterm: Monday, Oct. 28
 - Final exam: Wednesday, Dec. 4
- Project
 - Proposal due on Oct. 21; teams of 2-3
 - Project presentation on Dec. 9
 - Project report due on Dec. 10
 - Project ideas and datasets posted on Piazza
 - Example projects from DS 4400 posted on Piazza

Project Proposal

- Project Title
- Project Team
- Problem Description
 - What is the prediction problem you are trying to solve?
- Dataset
 - Link to data, brief description, number of records, feature dimensionality (at least 10K records)
- Approach and methodology
 - Normalization
 - Feature selection
 - Machine learning models you will try (at least 3)
 - Splitting into training and testing, cross validation
 - Language and packages you plan to use
- Metrics (how you will evaluate your models)

Review: Naïve Bayes Classifier

- For each class label k
 - 1. Estimate prior P[Y = k] from the data
 - 2. For each value v of attribute X_i
 - Estimate $P[X_i = v | Y = k]$
 - Classify a new point via:

$$h(\mathbf{x}) = \underset{y_k}{\arg \max} \log P(Y = k) + \sum_{j=1}^{d} \log P(X_j = x_j \mid Y = k)$$

 In practice, the independence assumption doesn't often hold true, but Naïve Bayes performs very well despite it

Review Naïve Bayes

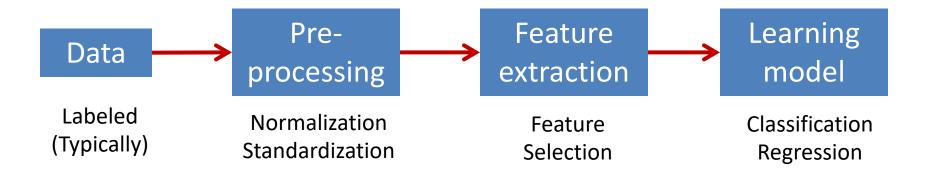
- Density Estimators can estimate joint probability distribution from data
- Risk of overfitting and curse of dimensionality
- Naïve Bayes assumes that features are independent given labels
 - Reduces the complexity of density estimation
 - Even though the assumption is not always true, Naïve Bayes works well in practice
- Applications: text classification with bag-of-words representation
 - Naïve Bayes becomes a linear classifier

Outline

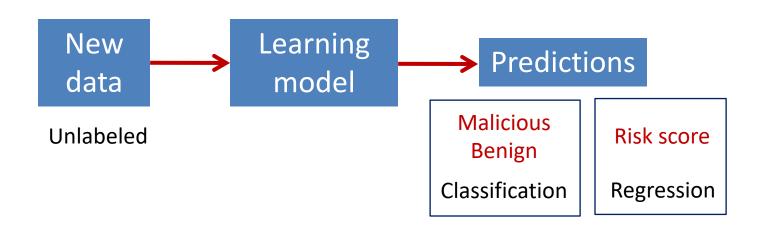
- Feature selection
 - Wrapper
 - Filter
 - Embedded methods
- Decision trees
 - Information Gain
 - ID3 algorithm
 - Pruning decision trees

Supervised Learning Process

Training



Testing



Feature selection

Feature Selection

 Process for choosing an optimal subset of features according to a certain criteria

Why we need Feature Selection:

- 1. To improve performance (in terms of speed, predictive power, simplicity of the model).
- 2. To visualize the data for model selection.
- 3. To reduce dimensionality and remove noise.

Feature Search Space

Search Space: Complete Set of **Empty Set of Features Features**

Exponentially large!

Methods for Feature Selection

Wrappers

- Select subset of features that gives best prediction accuracy (using cross-validation)
- Model-specific

Filters

- Compute some statistical metrics (correlation coefficient, mutual information)
- Select features with statistics higher than threshold

Embedded methods

- Feature selection done as part of training
- Example: Regularization (Lasso, L1 regularization)

Feature Engineering

- Feature engineering is crucial to getting good results
- Strategy: overshoot and regularize
 - Define as many features as you can
 - Use regularization for models that support it
 - Use other feature selection methods (e.g., filters)
 otherwise
- Do cross-validation to evaluate selected features on multiple runs
- When feature selection is frozen, evaluate on test set

Wrappers: Search Strategy

With an exhaustive search

101110000001000100001000000000100101010

With d features $\rightarrow 2^d$ possible feature subsets.

20 features ... 1 million feature sets to check

25 features ... 33.5 million sets

30 features ... 1.1 billion sets

- Need for a search strategy
 - Sequential forward selection
 - Recursive backward elimination
 - Genetic algorithms
 - Simulated annealing

▶ ...

Wrappers: Sequential Forward Selection

Start with the empty set $S = \emptyset$

While stopping criteria not met

For each feature X_f not in S

- Define $S' = S \cup \{X_f\}$
- Train model using the features in S'
- Compute the accuracy on validation set

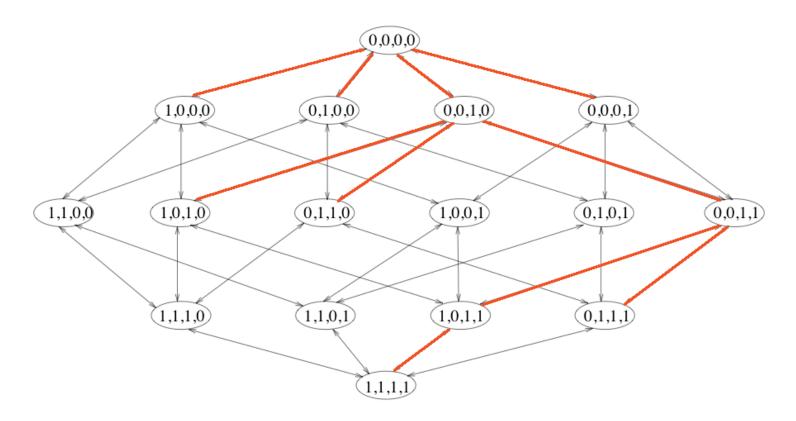
End

S = S' where S' is the feature set with the greatest accuracy

End

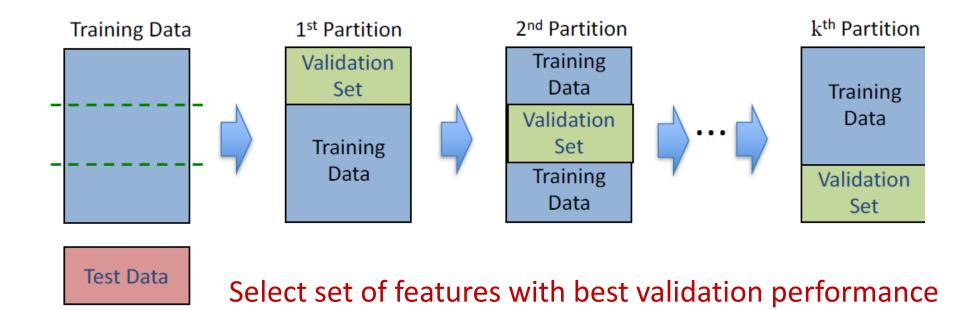
Backward feature selection starts with all features and eliminates backward

Search complexity for sequential forward selection



• Evaluates $\frac{d(d+1)}{2}$ features sets instead of 2^d

Cross Validation



- k-fold CV
 - Split data into k partitions of equal size
- Leave-one-out CV (LOOCV)
 - k=n (validation set only one point)

Filters

<u>Principle</u>: replace evaluation of model with quick to compute statistics $J(X_f)$

$J(X_k)$
0.846
0.811
0.810
0.611
0.443
0.388
0.09
0.05

For each feature X_f

• Compute $J(X_f)$

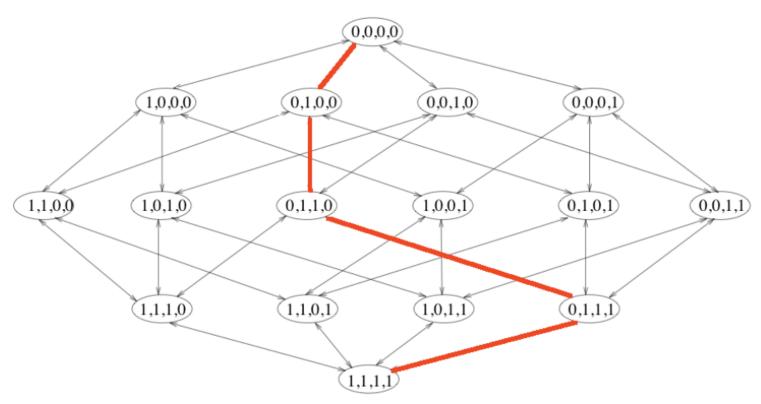
End

Rank features according to $J(X_f)$ Choose manual cut-off point

Examples of filtering criterion

- The mutual information with the target variable $J(X_f) = I(X_f; Y)$
- The correlation with the target variable
- χ^2 statistic

Search Complexity for Filter Methods



Pros:

A lot less expensive!

Cons:

Not model-oriented

Embedded methods: Regularization

Lasso regression

$$J(\theta) = \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2 + \lambda \sum_{j=1}^{d} |\theta_j|$$
Squared
Residuals

Regularization

- L1 norm for regularization
- No closed form solution
- Algorithms based on sub-gradient descent

Embedded methods: Regularization

Principle: the classifier performs feature selection as part of the learning procedure

Example: the logistic LASSO (Tibshirani, 1996)

$$f(x) = \frac{1}{1 + e^{-(\mathbf{w}^T x)}} = P(Y = 1 | x)$$

With Error Function:

$$E = -\sum_{i=1}^{N} \{y_i \log f(x_i) + (1 - y_i) \log (1 - f(x_i))\} + \lambda \sum_{f=1}^{d} |w_f|$$
Cross-entropy error Regularizing term

Pros:

Performs feature selection as part of learning the procedure

Cons:

Computationally demanding

Computational cos

Summary: Feature Selection

- Filtering
- L₁ regularization (embedded methods)
- Wrappers
 - Forward selection
 - Backward selection
 - Other search
 - Exhaustive

Computational cos

Summary: Feature Selection

Filtering

- L₁ regularization (embedded methods)
- Wrappers
 - Forward selection
 - Backward selection
 - Other search
 - Exhaustive

 Good preprocessing step

 Fails to capture relationship between features

Computational cost

Summary: Feature Selection

- Filtering
- •L₁ regularization (embedded methods)
- Wrappers
 - Forward selection
 - Backward selection
 - Other search
 - Exhaustive

- Can add regularization in optimization objective
- Can be solved with Gradient
 Descent
- Can be applied to many models (e.g., linear or logistic regression)
- Can not be applied to all methods (e.g., kNN)

Computational cos

Summary: Feature Selection

- Filtering
- L₁ regularization (embedded methods)
- •Wrappers
 - Forward selection
 - Backward selection
 - Other search
 - Exhaustive

 Most directly optimize prediction performance

 Can be very expensive, even with greedy search methods

 Cross-validation is a good objective function to start with

Outline

- Feature selection
 - Wrapper
 - Filter
 - Embedded methods
- Decision trees
 - Information Gain
 - ID3 algorithm
 - Pruning decision trees
- Lab decision trees

Sample Dataset

- Columns denote features X_i
- Rows denote labeled instances $\langle x_i, y_i \rangle$
- Class label denotes whether a tennis game was played

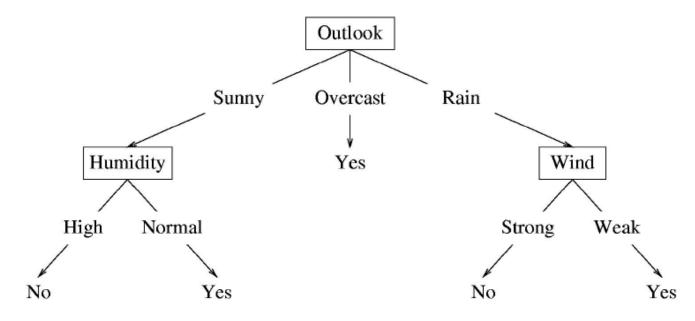
	Response			
Outlook	Temperature	Humidity	Wind	Class
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

 $< x_i, y_i >$

Categorical data

Decision Tree

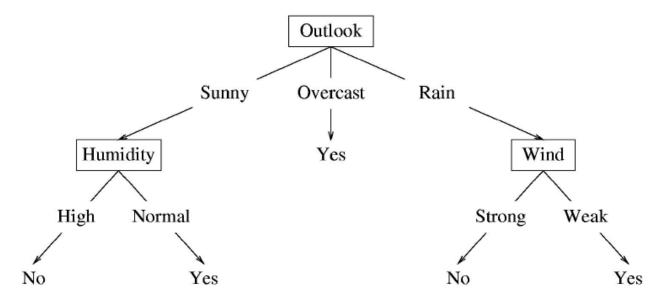
A possible decision tree for the data:



- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $p(Y \mid x \in \text{leaf})$)

Decision Tree

A possible decision tree for the data:

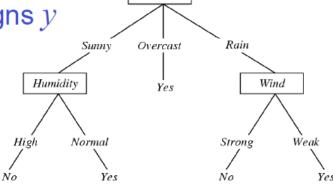


 What prediction would we make for <outlook=sunny, temperature=hot, humidity=high, wind=weak>?

Decision Tree Learning

Problem Setting:

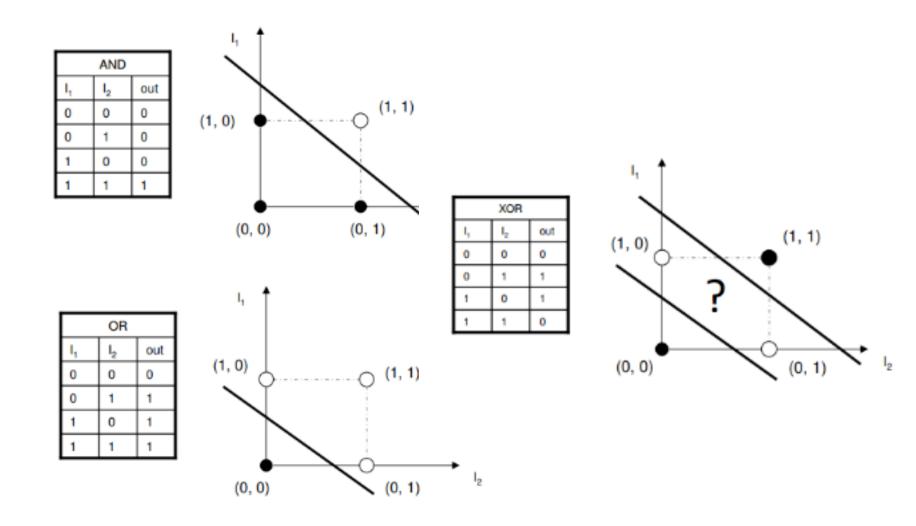
- Set of possible instances X
 - each instance x in X is a feature vector
 - e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>
- Unknown target function f: X→Y
 - Y is discrete valued
- Set of function hypotheses $H = \{ h \mid h : X \rightarrow Y \}$
 - each hypothesis h is a decision tree
 - trees sorts x to leaf, which assigns y



Outlook

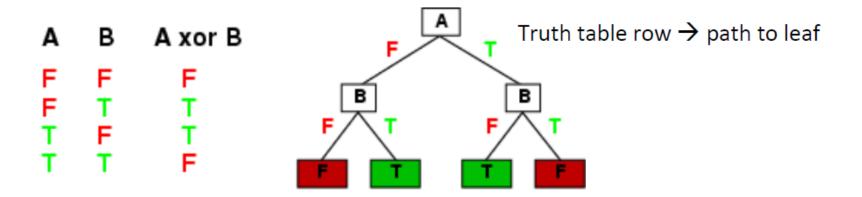
Slide by Tom Mitchell

Learning Boolean Functions



Expressiveness

 Decision trees can represent any boolean function of the input attributes



 In the worst case, the tree will require exponentially many nodes

Occam's Razor

- Principle stated by William of Ockham (1285-1347)
 - "non sunt multiplicanda entia praeter necessitatem"
 - entities are not to be multiplied beyond necessity
 - AKA Occam's Razor, Law of Economy, or Law of Parsimony

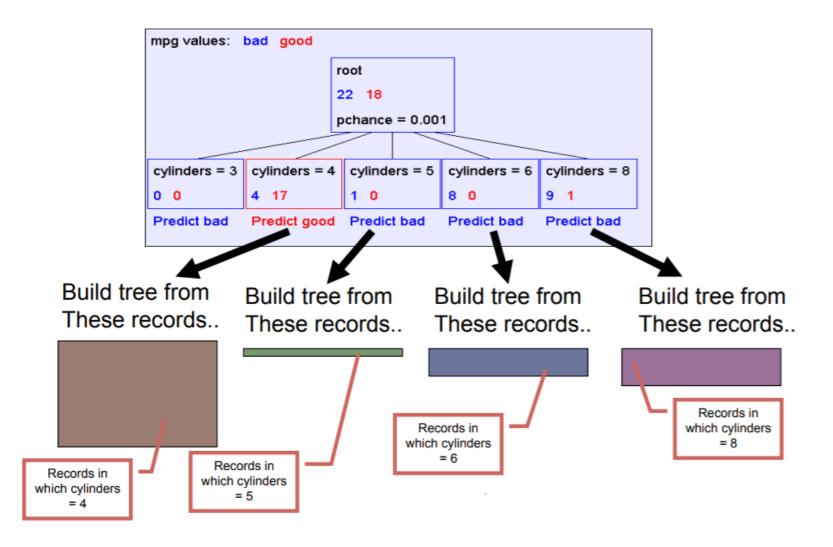
Idea: The simplest consistent explanation is the best

- Therefore, the smallest decision tree that correctly classifies all of the training examples is best
 - Finding the provably smallest decision tree is NP-hard
 - ...So instead of constructing the absolute smallest tree consistent with the training examples, construct one that is pretty small

Learning Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Key Idea: Use Recursion Greedily



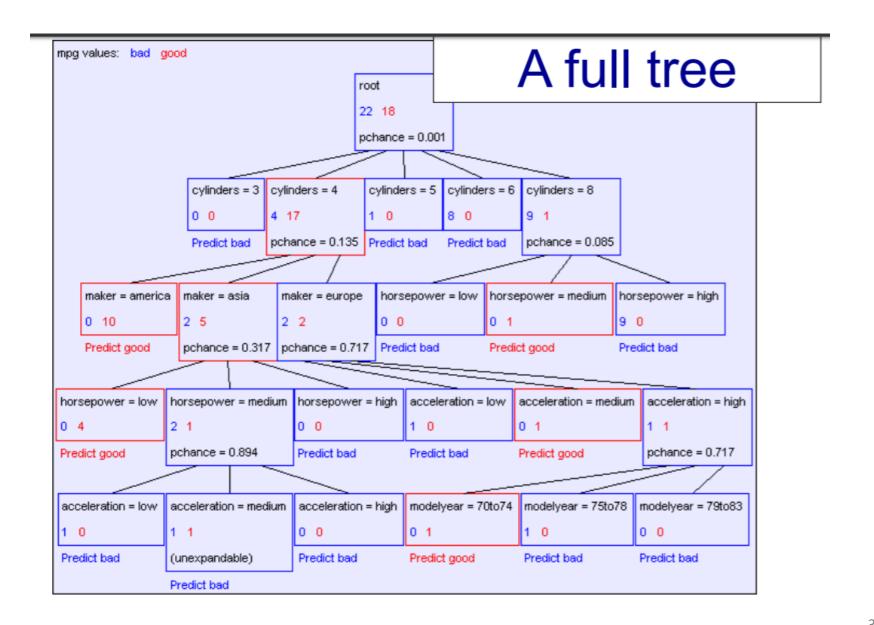
Second Level



Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

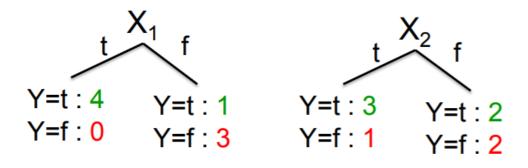
(Similar recursion in the other cases)

Full Tree



Splitting

Would we prefer to split on X_1 or X_2 ?



Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

X_1	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Use entropy-based measure (Information Gain)

Transmitting Bits

You are watching a set of independent random samples of X

You see that X has four possible values

$$P(X=A) = 1/4$$
 $P(X=B) = 1/4$ $P(X=C) = 1/4$ $P(X=D) = 1/4$

So you might see: BAACBADCDADDDA...

You transmit data over a binary serial link. You can encode each reading with two bits (e.g. A = 00, B = 01, C = 10, D = 11)

01000010010011101100111111100...

Use Fewer Bits

Someone tells you that the probabilities are not equal

$$P(X=A) = 1/2 | P(X=B) = 1/4 | P(X=C) = 1/8 | P(X=D) = 1/8$$

It's possible...

...to invent a coding for your transmission that only uses

1.75 bits on average per symbol. How?

Use Fewer Bits

Someone tells you that the probabilities are not equal

$$P(X=A) = 1/2 | P(X=B) = 1/4 | P(X=C) = 1/8 | P(X=D) = 1/8$$

It's possible...

...to invent a coding for your transmission that only uses 1.75 bits on average per symbol. How?

Α	0
В	10
С	110
D	111

(This is just one of several ways)

General case

Suppose X can have one of m values... V_{1} , V_{2} , ... V_{m}

$$P(X=V_1) = p_1$$
 $P(X=V_2) = p_2$ $P(X=V_m) = p_m$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

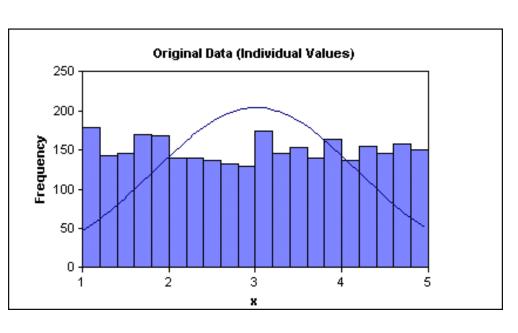
$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$
$$= -\sum_{j=1}^m p_j \log_2 p_j$$

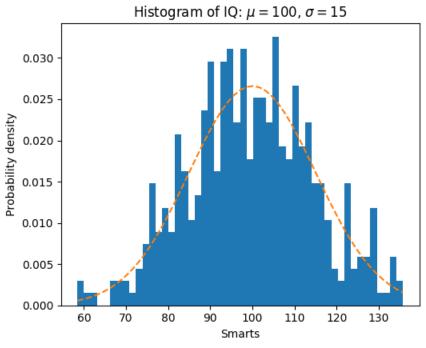
H(X) = The entropy of X

- "High Entropy" means X is from a uniform (boring) distribution
- "Low Entropy" means X is from varied (peaks and valleys) distribution

High/Low Entropy

Which distribution has high entropy?





High

Low

Suppose I'm trying to predict output Y and I have input X

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Let's assume this reflects the true probabilities

E.G. From this data we estimate

•
$$P(LikeG = Yes) = 0.5$$

•
$$P(Major = Math) = 0.5$$

Note:

•
$$H(X) = 1.5$$

$$\bullet H(Y) = 1$$

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y|X=v) = The entropy of Yamong only those records in which X has value V

Example:

- H(Y|X=Math) = 1
- H(Y|X=History) = 0
- $\bullet \ H(Y|X=CS)=0$

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average specific conditional entropy of Y

- = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row's value of X
- = Expected number of bits to transmit Y if both sides will know the value of X

$$= \sum_{j} Prob(X=v_{j}) H(Y \mid X=v_{j})$$

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average conditional entropy of Y

$$= \sum_{j} Prob(X=v_j) H(Y \mid X=v_j)$$

Example:

V_j	$Prob(X=v_j)$	$H(Y \mid X = v_j)$
Math	0.5	1
History	0.25	0
CS	0.25	0

$$H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5$$

Information Gain

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

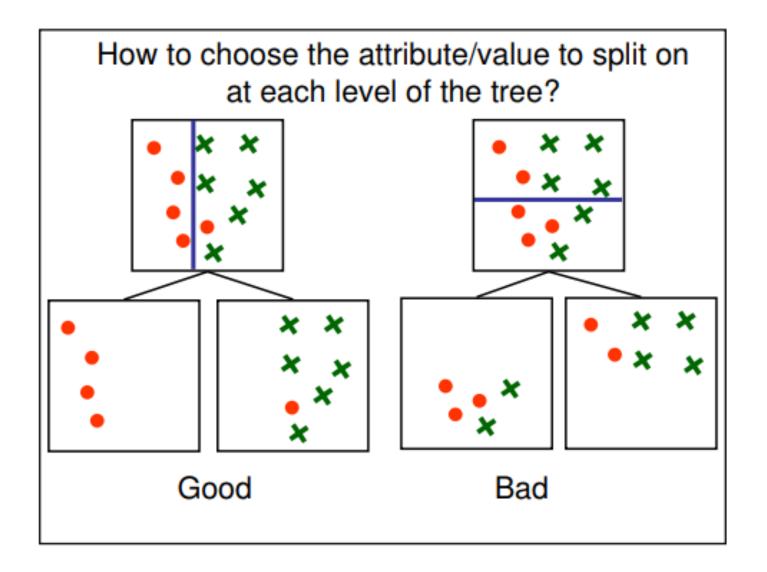
IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

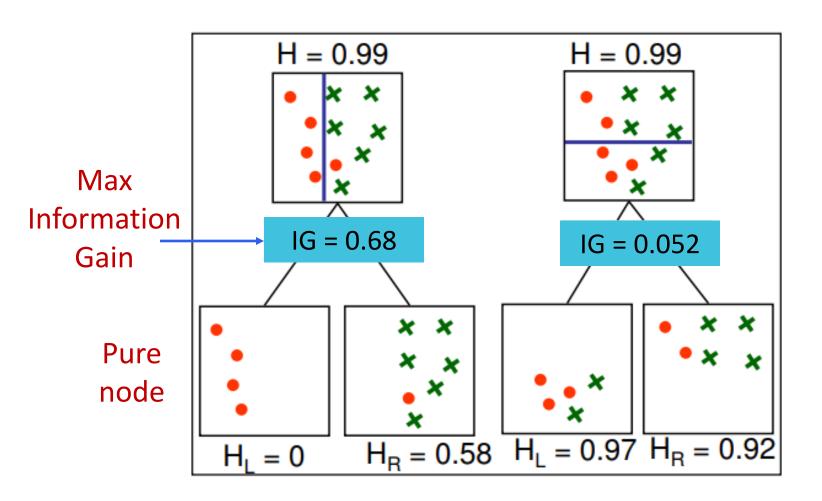
Example:

- $\bullet \ \ \mathsf{H}(\mathsf{Y}) = \mathbf{1}$
- H(Y|X) = 0.5
- Thus IG(Y|X) = 1 0.5 = 0.5

Example



Example Information Gain



Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!