# Learning Complementary Representations of the Past using Auxiliary Tasks in Partially Observable Reinforcement Learning

AAMAS 2020 — Auckland, New Zealand

Andrea Baisero Christopher Amato {baisero.a,c.amato}@northeastern.edu Northeastern University, Boston, USA





## **Overview**

#### Setting:

- Partial observable reinforcement learning
- Single agent, model-free
- With memory requirements

## **Learning History Representations with Auxiliary Tasks:**

- Train history representation  $\phi(h)$  to help solve RL task
- Contributions:
  - Principles for good and efficient auxiliary tasks
  - Prediction-based auxiliary task which satisfies principles
  - "Complementary" architecture for training history representations with auxiliary tasks



# **Background**

#### **POMDPs as History-MDPs**

## **History-MDPs:**

 $\mathsf{POMDP}\; \langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathrm{T}, \mathrm{O}, \mathrm{R} \rangle \Rightarrow \mathsf{History\text{-}MDP}\; \langle \mathcal{H}, \mathcal{A}, \mathrm{T}_{\mathcal{H}}, \mathrm{R}_{\mathcal{H}} \rangle$ 

- History states  $\mathcal{H} \doteq (\mathcal{A} \times \mathcal{O})^*$
- History dynamics  $T_{\mathcal{H}} \colon \mathcal{H} \times \mathcal{A} \to \mathcal{H}$
- History rewards  $R_{\mathcal{H}} \colon \mathcal{H} \times \mathcal{A} \to \mathbb{R}$

**Goal:** Optimize parametric history policy  $\pi_{\mathcal{H}} \colon \mathcal{H} \to \Delta \mathcal{A}$ 

#### **Pros & Cons:**

- + Solve POMDPs using MDP methods
- History-states are hard
  - $|\mathcal{H}|$  exponential in horizon
  - Histories  $h \in \mathcal{H}$  have different "sizes"
  - Same history never seen twice in one episode
  - Extremely hard to generalize



# **Background**

#### **Internal State Representations**

## History Policy Decomposition: $\pi_{\mathcal{H}} \equiv \pi_{\mathcal{X}} \circ \phi$

- Internal-state set X
- Internal-state representation  $\phi \colon \mathcal{H} \to \mathcal{X}$
- Internal-state policy  $\pi_{\mathcal{X}} \colon \mathcal{X} \to \Delta \mathcal{A}$

## Common Internal State Representations

- Belief-state;  $b(h) \in \Delta S$ 
  - + Golden standard for generalization
  - Requires known/learned model
- Reactive-m; concatenation of m latest interactions
  - + Great for short-term memorization
  - Poor generalization for mid-/long-term
- Recurrent; recurrent neural network
  - + Potential for long-term memorization/generalization
  - Hard to train to do so

Motivation

**Model-free RL** trains  $\phi$  and  $\pi_{\mathcal{X}}$  using the RL objective

$$\phi^*, \pi_{\mathcal{X}}^* = \operatorname*{argmax}_{\phi, \pi_{\mathcal{X}}} \mathbb{E}\left[G\right]$$

#### **Problems:**

- + Technically correct objective
- Rewards are a weak training signal
- Only implicit feedback on good representations  $\phi$
- Sample experience contains more learning potential

**Solution:** Use an auxiliary task to train better  $\phi$ 

- + Fully exploit sample experience
- + Better representations, solve RL task better/faster



#### **Principles**

#### Goals:

Generalize like the true belief-state

$$b(h) = b(h') \Leftrightarrow \phi(h) = \phi(h')$$

**2** Help  $\pi_{\mathcal{X}}$  converge fast

## Generalization Principles for Auxiliary Tasks

Should be history-variant

$$h \not\approx h' \Rightarrow \phi(h) \not\approx \phi(h')$$

Belief-state should be a sufficient statistic of history

$$b(h) \not\approx b(h') \Rightarrow \phi(h) \not\approx \phi(h')$$

#### **Principles**

#### Goals:

Generalize like the true belief-state

$$b(h) = b(h') \Leftrightarrow \phi(h) = \phi(h')$$

**2** Help  $\pi_{\mathcal{X}}$  converge fast

## Efficiency Guidelines for Auxiliary Tasks

- Should be "easier" than RL, e.g., self-supervised
   ⇒ faster convergence
- Should be well-defined for every time-step
   ⇒ data efficiency
- Should be stationary w.r.t. the agent
   ⇒ sample efficiency (w/ experience replay)

**One-Step Predictive Task** 

## One-Step Predictive Auxiliary Task (AUX)

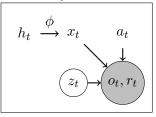
Train  $\phi$  and prediction model  $p \colon \mathcal{X} \times \mathcal{A} \to \Delta \ (\mathcal{O} \times \mathcal{R})$  to estimate observation-reward predictions

$$p(\phi(h), a) \mapsto \Pr(O, R \mid H = h, A = a)$$
.

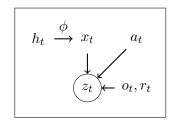
## Advantages:

- + Satisfies principles & guidelines
  - History-variant
  - Belief-state as sufficient statistic
  - Self-supervised
  - Well-defined for every time-step
  - Stationary w.r.t agent
- + Based on observable data

**VAE for the One-Step Predictive Task** 



(a) Generative model p(z, o, r; x, a)



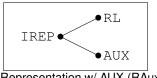
(b) Inference model q(z; x, a, o, r)

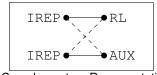
#### ELBO loss for observation-reward prediction

$$\mathcal{L}_{\mathsf{ELBO}}(h, a, o, r) = \left. \mathbb{E}_{z \sim q(z; x, a, o, r)} \left[ \log \left( \frac{p(o, r; z, x, a)}{q(z; x, a, o, r)} \right) \right] \right|_{x = \phi(h)}$$

- Context variables: History h, action a
- Outcome variables: Observation o, reward r

**Learning Complementary Representations** 





(a) Representation w/ AUX (RAux)

(b) Complementary Representations w/ AUX (CRAux)

Left dots Internal state representations

Right dots Tasks

Solid edges Representation used and trained on task

Dashed edge Representation used but not trained on task



## **Evaluation**

#### **Baselines**

## **Baseline representations**

```
TrueBelief Belief-state representation of true model (as upper-bound on information-content)
```

React- $\{1,2,4\}$  Reactive representations w/ memory  $\{1,2,4\}$  GRU Recurrent representation

## Proposed representations:

GRU-RAux Recurrent representation trained w/ RAux GRU-CRAux Recurrent representation trained w/ CRAux

**RL task** solved using A2C + negative-entropy loss.



#### **Evaluation**

#### **Domains**

## Finite POMDPs w/ memory requirements:

- Shopping-5 Localize and select the target item Flexible task:
  - Solvable with short-term memory
  - Optimal solution requires mid-term memory
- HeavenHell-3 Gather info and find the right exit.

  Rigid task:
  - Requires mid-term memory
- RockSample-5-6 Find and collect good rocks Larger and more stochastic task
  - Solvable with short-term memory
  - Optimal solution requires long-term memory



## **Evaluation**

#### Results

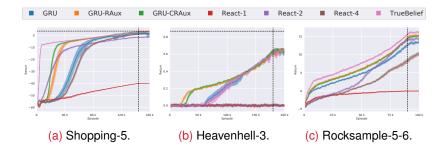


Figure: Training performance averaged over 40 independent runs, with shaded areas showing 2 standard errors of the mean.



## **Conclusions**

Summary

#### **Conclusions**

- RL task is insufficient to learn good representations  $\phi(h)$
- Auxiliary tasks can train better representations  $\phi(h)$ 
  - $\Rightarrow$  help RL agent solve task better/faster

#### **Contributions**

- Principles for good and efficient auxiliary tasks
- Prediction-based auxiliary task which satisfies principles
- "Complementary" architecture for training history representations with auxiliary tasks

