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Introduction Partially Observable Control Stateful PORL References

Overview

Partial Observability:
• Single-agent RL perspective
• Mainly theory and difficulties of PO control
• Practical methods and extensions

Asymmetric RL for Partial Observability (aka Stateful PORL):
• Note: Not related to equivariance-type symmetry as presented by Dian
• Main subject of my research & thesis dissertation
• Good results, ongoing work, many open questions
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Examples of Full and Partial Observability

Informal definition: Some state information is hidden.

(a) Acrobot. (b) Lunar Lander. (c) Sokoban. (d) Flappybird. (e) Breakout.

(f) ViZDoom.
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Implications of Partial Observability

What is partial observability?
• Environment state is in some way hidden from agent

e.g., behind the agent, behind the corner, contents of a box, etc.
• Agent sees indirect observations, not full state

• Sometimes filtered state
• Sometimes separate observation space altogether

• Non-Markovian Pr(ot | ot−1, . . . , o1) ̸= Pr(ot | ot−1)

Is that such a big deal?
• No, just use the same methods with available observation

• YES! Significant theoretical & practical consequences!

Reactive policies π : O → ∆A

are far from ideal!
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A Positive Example: Sutton’s Gridworld
Observation: 3x3 region around agent

Figure: Reactive solution to Sutton’s gridworld (Littman, 1994).

Keypoints: State aliasing
Suboptimality, reactive control as constrained control
Still, we can guarantee goal
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A Negative Example: McCallum’s Maze
Observation: 3x3 region around agent

Figure: McCallum’s Maze (Littman, 1994).

Question: Can we guarantee goal?

Keypoints: Deterministic π fails from one direction (constrained policy)
Stochastic π succeeds from both directions (still suboptimal)
Optimal deterministic policy not guaranteed?

Resolution: Deterministic π w/ memory, guarantee goal from both directions!
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Information Gathering & Memorization

Goal: Reach good exit, avoid bad exit

Observability:
• Full observability of position
• Partial observability of exits

FO Optimality: Just exit

PO Optimality: Backtrack, memorize, exit
Easy to execute
Deviously hard to discover

ExitExit

Agent

Priest

Figure: Heaven/Hell Problem.

Information Gathering:
• Broader than state estimation, about reaching desireable belief-states
• Problem-dependent, e.g., info gathering actions/states/experiences, etc.
• Commonly harmful upfront cost, hard to overcome

Memorization: History contains all the info, memorize what?
• Memory as information extraction
• Needle in haystack problem, key to extract and integrate right info
• Remember too little, remember too much, remember wrong things
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Information Gathering & Memorization

(a) State.

(b) Observation.

Figure: Memory-Four-Rooms-9x9, a procedurally generated navigation task which
requires information-gathering and memorization. The agent must avoid the bad exit
and reach the good exit, which is identifiable by the color of the beacon.
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Full vs Partial Observability

Fully Observable Control
• Access to full system state

π : S → ∆A
• Solid theory, comparatively easy!
• Strong assumption, not always possible!

Partially Observable Control
• Access to partial/indirect observations derived from state

π : ?→ ∆A
• Better match to reality, common in real world problems
• Extremely wide range of difficulties (technical vs significant PO)

• At best, about as difficult as full observability
• At worst, orders of magnitude more difficult, virtually impossible
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Markov Decision Processes (MDPs) Refresher

Definition: MDP tuple M = ⟨S,A, T,R, γ⟩
• State space S
• Action space A
• Transition function T : S ×A → ∆S
• Reward function R : S ×A → R
• Discount factor γ ∈ [0, 1)

Policy: π : S → ∆A

Goal: maxπ J
.
= E

[∑
t γ

tR(st, at)
]

State Values via Bellman equations

V π(s) = Ea∼π(s)

[
R(s, a) + γ Es′|s,a

[
V π(s′)

]]
(1)

Qπ(s, a) = R(s, a) + γ Es′|s,a
[
Ea′∼π(s′)

[
Qπ(s′, a′)

]]
(2)
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Partially Observable Markov Decision Processes (POMDPs)

Definition: POMDP tuple M = ⟨S,A,O, p, T,O,R, γ⟩
• State space S
• Action space A
• Observation space O
• Starting state distribution p ∈ ∆S
• Transition function T : S ×A → ∆S
• Observation function O : A× S → ∆O

O : S → ∆O (optional starting observation)
• Reward function R : S ×A → R
• Discount factor γ ∈ [0, 1)

Policy: π : ?→ ∆A
(spoiler: histories or beliefs)

Goal: maxπ J
.
= E

[∑
t γ

tR(st, at)
]
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(PO)MDP Graphical Models

S0 S1 S2
. . .

A0 A1 A2

Figure: MDP graphical model.

S0 S1 S2
. . .

A0 A1 A2

O0 O1 O2
. . .

H0 H1 H2
. . .

H0 H1 H2
. . .

Figure: POMDP graphical model.
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Histories
Notation:
• History Space H .

= O × (A×O)∗
e.g., h = (o0, a0, o1, . . . al−1, ol−1) history with length |h| = l

• Concatenation notation hao = (∗h, a, o)

History-based Control:
• History policy π : H → ∆A
• History values via Bellman equations

V π(h) = Ea∼π(h)

[
R(h, a) + Eo|h,a [V

π(hao)]
]

(3)

Qπ(h, a) = R(h, a) + Eo|h,a
[
Ea′∼π(hao)

[
Qπ(hao, a′)

]]
(4)

where

R(h, a)
.
= Es|h [R(s, a)] (5)

Pr(o | h, a) =
∑
s,s′

Pr(s | h)T (s, a, s′)O(a, s′, o) (6)
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Histories - Why Actions?
Question: Agent chooses actions, they are not observations of state

Do we actually need them?

Answer: Yes, actions may influence unobserved part of state

(a) Starting state. (b) Left turn. (c) Right turn.

Figure: Spiral problem where action-memory is necessary.

In Practice:
• Highly dependent on problem and action semantics

• Generic case: Strictly necessary
• Special case: Plausibly unnecesaary and ignorable
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Agent POV Example

Image

Figure: ????? problem.

Table: Agent POV.

Time History Action Reward Observation

0 ( ) A3 -100 O1
1 (A3, O1) A1 -1 O2
2 (A3, O1, A1, O2) A1 -1 O2
3 (A3, O1, A1, O2, A1, O2) A2 10 O1
4 (A3, O1, A1, O2, A1, O2, A2, O1) A2 -100 O1

Keypoints:
• Unlikely seeing same histories enough times to learn (despite tiny size)
• Hard to interpret long sequences despite semantics
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Agent POV Example

Figure: Tiger problem1.

Table: Tiger Problem POV.

Time History Action Reward Observation

0 ( ) OpenRight -100 HearLeft
1 (OR, HL) Listen -1 HearRight
2 (OR, HL, L, HR) Listen -1 HearRight
3 (OR, HL, L, HR, L, HR) OpenLeft 10 HearLeft
4 (OR, HL, L, HR, L, HR, OL, HL) OpenLeft -100 HearLeft

Keypoints:
• Unlikely seeing same histories enough times to learn (despite tiny size)
• Hard to interpret long sequences despite semantics
1(Possibly recursive) image credit to Chris Amato’s PORL slides.
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Beliefs
Belief: Distribution over states given observed history
• Belief Space B .

= ∆S
• Concatenation notation bao = (∗b, a, o)
• POMDP initial belief p ∈ B, prior to any observation
• Notation overload: b : H → ∆S, likelihood of s given observed history h

b(h, s)
.
= Pr(s | h)

Belief-based Control:
• Belief policy π : B → ∆A
• Belief values via Bellman equations

V π(b) = Ea∼π(b)

[
R(b, a) + γ Eo|b,a [V

π(bao)]
]

(7)

Qπ(b, a) = R(b, a) + γ Eo|b,a
[
Ea′∼π(bao)

[
Qπ(bao, a′)

]]
(8)

where

R(b, a)
.
= Es∼b [R(s, a)] (9)

Pr(o | b, a) =
∑
s,s′

b(s)T (s, a, s′)O(s′, a, o) (10)
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Belief Update
Rules: Just Bayes’ rule

po(s) ∝ p(s)O(s, o) (11)

bao(s′) ∝

(∑
s

b(s)T (s, a, s′)

)
O(a, s′, o) (12)

In practice:
• Discrete state space S ≡ {si}ni=1

=⇒ Tensor operations, exact recursive update
• Continuous state space, linear dynamic system, e.g.

st+1 = Ftst +Btat + wt (13)

ot = Htst + vt (14)

=⇒ Kalman filter, exact recursive update on µ = E [s | h] ,Σ = C [s | h]
• General system

=⇒ Particle filter {sk}Kk=1, approximate sample-based update
Particles {sk}Kk=1 + rejection sampling→ {s′k}Kk=1

Particles {sk, wk}Kk=1 + importance sampling→ {s′k, w′
k}Kk=1
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Belief Update Example: Gridworld

Figure: Belief estimation over time2.

Idea: Maybe PO control is all about state estimation? NO

2(Possibly recursive) image credit to Chris Amato’s PORL slides.
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Belief Update Example: Crying Baby

(a) Model3

(b) Transition3

Details:
• States: not hungry (c=0), hungry (h=1)
• Actions: no feed (f=0), feed (f=1)
• Observations: no cry (c=0), cry (c=1)
• Costs: 5 to feed, 10 if hungry

3(Possibly recursive) image credit to Chris Amato’s PORL slides.
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Belief Update Example: Crying Baby

(a) Transitions.

Next State State, Action
h = 0 h = 0 h = 1 h = 1
f = 0 f = 1 f = 0 f = 1

h = 0 0.8 1.0 0.0 1.0
h = 1 0.2 0.0 1.0 0.0

(b) Observations.

Observation State
h = 0 h = 1

c = 0 0.9 0.2
c = 1 0.1 0.8

Table: Beliefs over time.

Time Action Observation Belief
h = 0 h = 1

0 0.5 0.5
1 f = 0 c = 1 0.0928 0.9072
2 f = 1 c = 0 1.0 0.0
3 f = 0 c = 0 0.9759 0.0241
4 f = 0 c = 0 0.9701 0.0299
5 f = 0 c = 1 0.4624 0.5376

Note: Never really sure if baby is hungry!
Keypoint: Not always about state estimation!
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POMDPs as History-MDPs
Given: POMDP tuple M = ⟨S,A,O, p, T,O,R, γ⟩

Definition: History-MDP tuple Mh
.
= ⟨Sh,Ah, Th, Rh, γ⟩

• State space Sh
.
= H

• Action space Ah
.
= A

• Transition function
Th(h, a, h

′)
.
= Es|h

[∑
s′,o T (s, a, s

′)O(a, s′, o) I [h′ = hao]
]

• Reward function R(h, a)
.
= Es|h [R(s, a)]

Rejoice! MDP theory fully applies to POMDPs via history-MDPs!
• No need to rederive all of MDP theory for history-MDPs
• POMDPs just as easy as MDPs!

• POMDPs just as “easy” as VERY HARD MDPs!

Practical Difficulties:
• Exponential space size
• Never encounter same history twice
• Hard to generalize well

Do similar histories imply similar optimal actions?
• Needle in a haystack problem
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POMDPs as Belief-MDPs
Given: POMDP tuple M = ⟨S,A,O, p, T,O,R, γ⟩

Definition: Belief-MDP tuple Mb
.
= ⟨Sb,Ab, Tb, Rb, γ⟩

• State space Sb
.
= B = ∆S

• Action space Ab
.
= A

• Transition function
Tb(b, a, b

′)
.
= Es∼b

[∑
s′,o T (s, a, s

′)O(a, s′, o) I [b′ = bao]
]

• Reward function R(b, a)
.
= Es∼b [R(s, a)]

Rejoice! MDP theory fully applies to POMDPs via belief-MDPs!
• No need to rederive all of MDP theory for belief-MDPs
• POMDPs just as easy as MDPs!

• Well... no... but we’re getting closer... with some big caveats!
• Belief as sufficient statistic of history for control, good generalization
• Similar beliefs usually imply similar optimal actions

Practical Difficulties:
• Continuous MDP even for discrete POMDPs
• Requires model of environment
• Estimating beliefs and belief updates is hard
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Deep Q-Networks (DQN)
“Human-level control through deep reinforcement learning” (Mnih et al., 2015)

Control Problem: Atari 2600, high-dimensional highly structured data

LQ̂ =
1

2

(
r + γmax

a′
Q̂(s′, a′)− Q̂(s, a)

)2

(15)

Frame Stacking: Approximate ŝt ≈ (ot, ot−1, ot−2, ot−3)

• ŝt approximates a Markov state much more than ot,
e.g., movements and velocities

Limitations:
• Requires domain knowledge

How many observations are enough?
• Works fine in many Atari games, but not all
• Not generalizable
• Not really about partial observability

Main success about deep RL on high-dimensional highly structured data
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Deep Recurrent Q-Networks (DRQN) - Recurrent Layers for Memory
“Deep recurrent q-learning for partially observable mdps” (Hausknecht and Stone, 2015)

Control Problem: Flickering Atari, frame obscured with p = 50%

Approach: Ditch frame stacking, employ RNNs!
• ĥt, yt = F (ĥt−1, xt)!
• Theoretical “infinite” memory!
• Vanishing gradients problem

• LSTMs (Hochreiter and Schmidhuber, 1997)
• GRUs (Cho et al., 2014)

Keypoints:
• Use RNN to combine all observation information over time, ϕ(h)
• Combine RNN with any deep RL method, PO “solved”!

Limitations:
• Training RNNs is slow and requires A LOT of data
• Vanishing gradient still a problem for LSTMs and GRUs
• RNNs may not easily learn good history representations just via RL
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Deep Recurrent Q-Networks (DRQN) - Recurrent Layers for Memory
“Deep recurrent q-learning for partially observable mdps” (Hausknecht and Stone, 2015)

Figure: Left: Training performance. Right: Resistance to varying levels of flickering probability4.

4Image and caption credit to Hausknecht and Stone, 2015.
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Summary of Partial Observability
Partial Observability:
• Inevitable property of our world (read: our senses and sensors)
• PO as default case, FO as special case

Great divide between theory and practice:
• Theory: POMDPs interpretable as MDPs
• Practice: POMDPs VERY hard MDPs

History representation learning as sequence modeling
• Big recent advances, especially NLP, e.g., attention, transformers, LLMs
• However, NLP benefits from BIG DATA
• While RL almost fundamentally about small data, sample efficiency

Personal hunch: Complex PO not solved by RL alone
• model-based approaches to internal state representation
• planning + model-free approaches to control

Next: Stateful PORL
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Stateful PORL

Groundbreaking new idea:

Let’s use state in PORL!

... ... Wait, what?

State available at training time:
• Agent learning algorithm uses state to improve agent policy
• Agent policy does not use state to select actions
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Stateful PORL - Offline RL

Training with static dataset:
• FO dataset D = {(si, ai, ri, s

′
i)}

N
i

• PO dataset D = {(hi, ai, ri, oi, ri)}Ni
• PO+state dataset D = {(hi, si, ai, ri, s

′
i, oi, ri)}

N
i

Training with dynamic simulator:
• Exploit simulated state representation
• Other practical advantages: Physical safety, training efficiency
• Other practical concerns (sim-to-real):

• State completeness (e.g., missing variables)
• Observation realism (e.g., out-of-distribution issues)
• Dynamics accuracy (e.g., impossible transitions, collisions, clipping)

• Multi-agent: Centralized Training for Decentralized Execution (CTDE)
• Single-agent: Offline Training for Online Execution (OTOE)

Question: How to use state (correctly) to improve history-policy?
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Stateful PORL - Asymmetric Actor-Critic
“Asymmetric Actor Critic for Image-Based Robot Learning” (Pinto et al., 2018)

Goal: Robot control from images

Topics:
• Robotic manipulation: Pick-n-place, push, move, etc.
• Vision based control: Third POV of workspace
• Goal based control (with explicit goal representation)
• Sim-to-real: Transfer from simulated training to real environment
• Asymmetric training: Exploit (compact) simulator state for training

Asymmetric Training:
• History policy constrained by problem definition

π : H → ∆A, where H ≡ history of images
• State critic as training construct, not used during execution

V̂ : S → R, where S ≡ simulator internal state
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Stateful PORL - Asymmetric Actor-Critic
“Asymmetric Actor Critic for Image-Based Robot Learning” (Pinto et al., 2018)

(a) Asymmetric training framework5. (b) Randomized simulated environments5.

5(Pinto et al., 2018)
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Stateful PORL - Asymmetric Actor-Critic
“Asymmetric Actor Critic for Image-Based Robot Learning” (Pinto et al., 2018)

(Symmetric) Actor-Critic:

∇J = E
[∑

t

γ
t
Q

π
(ht, at)∇ log π(at;ht)

]
Q

π
(ht, at) ≈ rt + γV̂ (htatot)

LV̂ =
1

2

(
rt + γV̂ (htatot) − V̂ (ht)

)2

Asymmetric Actor-Critic:

∇J
?
= E

[∑
t

γ
t
Q

π
(st, at)∇ log π(at;ht)

]
Q

π
(st, at) ≈ rt + γV̂ (st+1)

LV̂ =
1

2

(
rt + γV̂ (st+1) − V̂ (st)

)2

Question: Does the asymmetric ∇J ?
= equality hold?

Answer: Not in general =(
• Can work in practice (e.g., for reactive control, as in paper!)
• But concerning theoretical issues re: partial observability
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Stateful PORL - Asymmetric Actor-Critic
“Asymmetric Actor Critic for Image-Based Robot Learning” (Pinto et al., 2018)

Figure: We show that asymmetric inputs for training outperforms symmetric inputs by significant
margins. The shaded region corresponds to ±1 standard deviation across 5 random seeds.
Although the behaviour cloning (BC) by expert imitation baseline (dashed lines) learn faster initially,
it saturates to a sub optimal value compared to asymmetric HER. Also note that the BC baseline
doesn’t include the iterations the expert poicy was trained on6.

6Image and caption credit to Pinto et al., 2018.
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Stateful PORL - Theory of Stateful Values
“Unbiased Asymmetric Reinforcement Learning under Partial Observability” (Baisero and Amato, 2022)

Questions of interest:
• Is V π(s) well-defined in PORL as in FORL?

V π(s)
?
= Ea|s

[
R(s, a) + γ Es′|s,a

[
V π(s′)

]]
(16)

• Is V π(s) an unbiased estimate of V π(h), i.e.,

V π(h)
?
= Es|h [V π(s)] (17)

(sufficient condition for unbiased gradient)
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Stateful PORL - Theory of Stateful Values
“Unbiased Asymmetric Reinforcement Learning under Partial Observability” (Baisero and Amato, 2022)

Definition of V π(s): Unique solution to the stateful Bellman equality

V π(s) = Ea|s
[
R(s, a) + γ Es′|s,a

[
V π(s′)

]]
(18)

Red flag:
• V π(s) measures expected performance
• Performance depends on:

• Extrinsic context, i.e., environment behavior
• Intrinsic context, i.e., agent behavior

Issue: What is the nature of Pr(a | s)?
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Stateful PORL - Theory of Stateful Values
“Unbiased Asymmetric Reinforcement Learning under Partial Observability” (Baisero and Amato, 2022)

Issue: What is the nature of Pr(a | s)?

S0 S1 S2 . . .

A0 A1 A2

Figure: MDP graphical model.

S0 S1 S2 . . .

A0 A1 A2

O0 O1 O2 . . .

H0 H1 H2 . . .

H0 H1 H2 . . .

Figure: POMDP graphical model.

• FORL: Direct (causal) relationship Pr(a | s) = π(a; s)

• PORL: Unclear relationship Pr(a | s) =
_
\_( ") )_/

_

• Policy acts based on histories, not state
• Pr(At = a | St = s) dependent on time

=⇒ State insufficient predictor of behavior, consequently of performance!

Conclusion: In general case, Pr(a | s) is ill-defined, V π(s) is ill-defined
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Stateful PORL - Theory of Stateful Values
“Unbiased Asymmetric Reinforcement Learning under Partial Observability” (Baisero and Amato, 2022)

Theorem (State Value Bias)
Even if/when well-defined, V π(s) is biased. Assume well-defined V π(s), then

V π(h) = Es|h [V π(s)] (19)

is not guaranteed to hold.

Proof by contradiction.
Assume Equation (19) holds. Take hA ̸= hB s.t. b(hA) = b(hB); a common
occurrence in POMDPs. Different histories hA ̸= hB imply different behaviors
and V π(hA) ̸= V π(hB). Same beliefs b(hA) = b(hB) imply

V π(hA) = Es|hA
[V π(s)] = Es|hB

[V π(s)] = V π(hB) . (20)

A contradiction is found, therefore Equation (19) does not hold. ■
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Stateful PORL - Theory of Stateful Values
“Unbiased Asymmetric Reinforcement Learning under Partial Observability” (Baisero and Amato, 2022)

Reactive Policy: State-observation value function

V π(s, o) = Ea∼π(o)

[
R(s, a) + γ Es′,o′|s,a

[
V π(s′, o′)

]]
(21)

Theorem (State-Observation Value Bias, or Lack Thereof)

V π(h) = Es|h [V π(s, oh)] (22)

History Policy: History-state value function

V π(h, s) = Ea∼π(h)

[
R(s, a) + γ Es′,o|s,a

[
V π(hao, s′)

]]
(23)

Theorem (History-State Value Bias, or Lack Thereof)

V π(h) = Es|h [V π(h, s)] (24)

Keypoints:
• Decision making context w/ state always well-defined
• Decision making context w/o state not always well-defined, e.g., V π(o)
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Stateful PORL - Theory of Stateful Values

Table: Theoretical properties of value functions.

Observations Policy Value Well Defined Unbiased

Generic o ∼ O(a, s) History π(h) V π(h) ✓ ✓
V π(s)
V π(s, o)
V π(h, s) ✓ ✓
V π(h, z) ✓ ✓

Generic o ∼ O(a, s) Reactive π(o) V π(h) ✓ ✓
V π(s)
V π(s, o) ✓ ✓
V π(h, s) ✓ ✓
V π(h, z) ✓ ✓

Reactive o ∼ O(s) Reactive π(o) V π(h) ✓ ✓
V π(s) ✓
V π(s, o) ✓ ✓
V π(h, s) ✓ ✓
V π(h, z) ✓ ✓

Reactive o ∼ O(s), w/o aliasing Reactive π(o) V π(h) ✓ ✓
V π(s) ✓ ✓
V π(s, o) ✓ ✓
V π(h, s) ✓ ✓
V π(h, z) ✓ ✓
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Stateful PORL - Asymmetric Actor-Critic (Revisited)
“Asymmetric Actor Critic for Image-Based Robot Learning” (Pinto et al., 2018)

Question: Why does it work if there are issues?

Answer: Reactive tasks, almost fully observable
Observation information approximates state information

Figure: Task observations7 are clean, occlusionless, almost fully observable.

7Image credit to Pinto et al., 2018
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Stateful PORL - Unbiased Asymmetric Actor-Critic
“Unbiased Asymmetric Reinforcement Learning under Partial Observability” (Baisero and Amato, 2022)

(Symmetric) Actor-Critic:

∇J = E
[∑

t

γ
t
Q

π
(ht, at)∇ log π(at;ht)

]
Q

π
(ht, at) ≈ rt + γV̂ (htatot)

LV̂ =
1

2

(
rt + γV̂ (htatot) − V̂ (ht)

)2

(Unbiased) Asymmetric Actor-Critic:

∇J
?
= E

[∑
t

γ
t
Q

π
(ht, st, at)∇ log π(at;ht)

]
Q

π
(ht, st, at) ≈ rt + γV̂ (ht+1, st+1)

LV̂ =
1

2

(
rt + γV̂ (ht+1, st+1) − V̂ (ht, st)

)2

Question: Does the asymmetric ∇J ?
= equality hold?

Theorem (Stateful Policy Gradient)

∇J = E

[∑
t

γtQπ(ht, st, at)∇ log π(at;ht)

]
(25)

Keypoints:
• Applicable to generic non-reactive problems and policies
• Small implementation change, huge empirical advantages
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Stateful PORL - Unbiased Asymmetric Actor-Critic
“Unbiased Asymmetric Reinforcement Learning under Partial Observability” (Baisero and Amato, 2022)
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Figure: Learning performance curves of episodic returns averaged over the last 100
episodes, with statistics computed over 20 independent runs. Shaded areas are
centered around the empirical mean and show one standard error of the mean.
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Stateful PORL - Asymmetric DQN
“Asymmetric DQN for partially observable reinforcement learning” (Baisero, Daley, and Amato, 2022)

Question: How to apply asymmetry to value-based methods?
• Actor-critic has two learned models π, V̂

• Value-based methods only has one Q̂(h, a) (behavior and evaluator)
=⇒ Introduce training construct Û(h, s, a)

Bottom-Up Approach: Develop asymmetric versions of basic algorithms
• Asymmetric Policy Iteration (API)
• Asymmetric Action-Value Iteration (AAVI)
• Asymmetric Q-learning (AQL)
• Asymmetric DQN (ADQN)

Mutual Consistency: Q̂ and Û are mutually consistent if

Q̂(h, a) = Es|h

[
Û(h, s, a)

]
(26)
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Stateful PORL - Asymmetric DQN
“Asymmetric DQN for partially observable reinforcement learning” (Baisero, Daley, and Amato, 2022)

Algorithm Asymmetric Policy Iteration (API)

Require: U0, Q0, π0 arbitrarily initialized tabular models.
Ensure: limk→∞{Uk, Qk, πk} = {U∗, Q∗, π∗}.
1: for k ← 0, 1, 2, 3, . . . do
2: Uk+1 ← Uk

3: repeat
4: Uk+1 ← BπkUk+1

5: until convergence
6: Qk+1 ← EUk+1

7: πk+1 ← g(Qk+1)
8: end for

Theorem (API Optimality)

The sequences Uk, Qk, and πk generated by API converge to U∗, Q∗, and π∗.
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Stateful PORL - Asymmetric DQN
“Asymmetric DQN for partially observable reinforcement learning” (Baisero, Daley, and Amato, 2022)

Algorithm Asymmetric Action-Value Iteration (AAVI)

Require: U0, Q0 arbitrarily initialized tabular models.
Ensure: limk→∞{Uk, Qk} = {U∗, Q∗}.
1: for k ← 0, 1, 2, 3, . . . do
2: Uk+1 ← Bg(Qk)

Uk

3: Qk+1 ← EUk+1

4: end for

Theorem (AAVI Optimality)

The sequences Uk and Qk generated by AAVI converge to U∗ and Q∗.
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Stateful PORL - Asymmetric DQN
“Asymmetric DQN for partially observable reinforcement learning” (Baisero, Daley, and Amato, 2022)

Algorithm Asymmetric Q-Learning (AQL)

Require: U , Q mutually consistent tabular models.
Ensure: {U,Q} → {U∗, Q∗}.

1: while True do
2: Initialize history and state (h, s)
3: while s is not terminal do
4: Choose action a from ϵ-greedy policy on Q
5: Take action a, observe r, s′, o
6: y ← r + γU(hao, s′, argmaxa′ Q(hao, a′))
7: U(h, s, a)← (1− α)U(h, s, a) + αy
8: Q(h, a)← (1− α)Q(h, a) + αy
9: (s, h)← (s′, hao)

10: end while
11: end while
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Stateful PORL - Asymmetric DQN
“Asymmetric DQN for partially observable reinforcement learning” (Baisero, Daley, and Amato, 2022)

Theorem (AQL Optimality)

Assume stepsizes αk satisfying the following asymptotic conditions,

∞∑
k=0

αk =∞ ,
∞∑

k=0

α2
k <∞ . (27)

If Q0, U0 are mutually consistent (Q0 = EU0), then the sequences Qk and Uk

generated by AQL converge to Q∗ and U∗ with probability 1.
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Stateful PORL - Asymmetric DQN
“Asymmetric DQN for partially observable reinforcement learning” (Baisero, Daley, and Amato, 2022)

(Symmetric) DQN:

LQ̂ =
1

2

(
y − Q̂(h, a)

)2
y = r + γmax

a′
Q̂(hao, a′)

Asymmetric DQN:

LQ̂ =
1

2

(
y − Q̂(h, a)

)2
LÛ =

1

2

(
y − Û(h, s, a)

)2
y = r + γÛ(hao, s′, argmax

a′
Q̂(hao, a′)

Note: Ignoring implementation details, e.g., target networks

Keypoints:
• Same y for LQ̂ and LÛ

• Difference between

max
a′

Q̂(hao, a′) (28)

max
a′

Û(hao, s′, a′) (29)

Û(hao, s′, argmax
a′

Q̂(hao, a′)) (30)
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Stateful PORL - Asymmetric DQN
“Asymmetric DQN for partially observable reinforcement learning” (Baisero, Daley, and Amato, 2022)

Algorithm Asymmetric DQN (ADQN)

Require: Û , Q̂ deep models parameterized by θ.
1: Initialize parameters θ
2: Initialize and prepopulate episode buffer
3: while True do
4: From simulated environment, sample and append episodes to episode buffer
5: From episode buffer, sample batch of transitions {(hi, si, ai, ri, s

′
i, oi)}Ni=1

6: LU ← 1
N

∑N
i=1 LÛ (hi, si, ai, ri, s

′
i, oi).

7: LQ ← 1
N

∑N
i=1 LQ̂(hi, si, ai, ri, s

′
i, oi).

8: Perform gradient step on θ using ∇θ(LU + LQ)
9: end while
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Stateful PORL - Asymmetric DQN
“Asymmetric DQN for partially observable reinforcement learning” (Baisero, Daley, and Amato, 2022)
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Figure: Performance curves showing episodic returns averaged over the last 100
completed episodes, with statistics computed over 20 independent runs. The shaded
areas represent one standard error around the mean.
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Stateful PORL - Learning Belief Representations for PORL
“Learning belief representations for partially observable deep RL” (Wang et al., 2023)

Objective: Train and use a sepresentation of belief b(h) for PORL

Compact Representation of State ϕ(s)

• Train state and observation representations ûs = ϕ(s), ûo = ϕ(o),
bisimulation r̂, ûs′ , ûo′ = g(ûs, ûo, â)

• Avoid redundancy via information bottleneck =⇒ compact ϕ(s)
• Throw everything away except ϕ(s)

Generative Belief Modeling with VAEs (Kingma, Welling, et al., 2019)
• Train generative model p(û | h, z), discriminative model q(z | û, h)
• Generate sample-based belief representation b(h) = {ûi}Ni=1

• Generate belief representation b̂ = Wagg

(
1
n

∑n
i=1 Wenc (ûi)

)
Policy Training
• Train belief-observation policy π(b̂, o) with standard FORL

A. Baisero — Partially Observable Control & Stateful Partially Observable RL (PORL) — CS 4180/5180 49 / 53



Introduction Partially Observable Control Stateful PORL References

Stateful PORL - Learning Belief Representations for PORL
“Learning belief representations for partially observable deep RL” (Wang et al., 2023)

(a) Performance of Believer and Asym-A2C variants on PO tasks8.

(b) Resiliance to cost of information gathering8.
8Image credit to Wang et al., 2023.
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Stateful PORL - Role of State
Question: Why does stateful RL work so well?
• State provides valuable information
• State boosts exploration
• State helps ground values before history

My hypothesis: (WIP)
• Not about information

Nothing special about state
• Tiny bit exploration
• Primarily representation learning

• ϕ(s) easier than ϕ(h)
• =⇒ V̂ (h, s) faster than V̂ (h)
• =⇒ better behavior
• =⇒ better data
• =⇒ better ϕ(s) and ϕ(h)
• =⇒ V̂ (h, s) faster than V̂ (h)
• =⇒ better behavior
• =⇒ better data
• =⇒ . . .

hard ϕ(h) bad V̂ (h)

bad π(h)

bad data

(a) A vicious Actor-Critic cycle.

easy ϕ(s)

hard ϕ(h) better V̂ (h, s)

better π(h)

better data

(b) A better Actor-Critic cycle.
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