Loading Events

« All Events

  • This event has passed.

November 7, 2019 10:00 am - 11:00 am EST

Title: Robust Deep Learning Under Distribution Shift

Speaker: Zachary Chase Lipton, Assistant Professor, Carnegie Mellon University

Date: Thursday, November 7th, 2019

Time: 10:00am

Location: Northeastern University, 177 Huntington Avenue, Boston, Massachusetts 02115, 11th Floor

 

Abstract

We might hope that when faced with unexpected inputs, well-designed software systems would fire off warnings. However, ML systems, which depend strongly on properties of their inputs (e.g. the i.i.d. assumption), tend to fail silently. Faced with distribution shift, we wish (i) to detect and (ii) to quantify the shift, and (iii) to correct our classifiers on the fly—when possible. This talk will describe a line of recent work on tackling distribution shift. First, I will focus on recent work on label shift, a classic problem, where strong assumptions enable principled methods. Then I will discuss how recent tools from generative adversarial networks have been appropriated (and misappropriated) to tackle dataset shift—characterizing and (partially) repairing a foundational flaw in the method.

 

About the Speaker

Zachary Chase Lipton is an assistant professor at Carnegie Mellon University. His research spans both core machine learning methods and their social impact. This work addresses diverse application areas, including medical diagnosis, dialogue systems, and product recommendation. He is the founder of the Approximately Correct blog and an author of Dive Into Deep Learning, an interactive open-source book teaching deep learning through Jupyter notebooks. Find on Twitter (@zacharylipton) or GitHub (@zackchase).

Details

Date:
November 7, 2019
Time:
10:00 am - 11:00 am
Event Categories:
, , , ,

Venue

177 Huntington Ave, 11th Floor
177 Huntington Avenue
Boston, MA 02115 United States
+ Google Map

Location

Campus
Boston