
Verifying Asynchronous Event-Driven Programs
Using Partial Abstract Transformers

Abstract. We address the problem of analyzing asynchronous event-
driven programs, in which concurrent agents communicate via unbounded
message queues. The safety verification problem for such programs is
undecidable. We present in this paper a technique that combines queue-
bounded exploration with a convergence test : if the sequence of certain
abstractions of the reachable states, for increasing queue bounds k, con-
verges, we can prove any property of the program that is preserved by
the abstraction. If the abstract state space is finite, convergence is guar-
anteed ; the challenge is to catch the point kmax where it happens. We
further demonstrate how simple invariants formulated over the concrete
domain can be used to eliminate spurious abstract states, which other-
wise prevent the sequence from converging. We have implemented our
technique for the P programming language for event-driven programs.
We show experimentally that the sequence of abstractions often con-
verges fully automatically, in hard cases with minimal designer support
in the form of sequentially provable invariants, and that this happens for
a value of kmax small enough to allow the method to succeed in practice.

1 Introduction

Asynchronous event-driven (AED) programming refers to a style of programming
multi-agent applications. The agents communicate shared work via messages.
Each agent waits for a message to arrive, and then processes it, possibly sending
messages to other agents, in order to collectively achieve a goal. This program-
ming style is common for distributed systems as well as low-level designs such as
device drivers [15]. Getting such applications right is an arduous task, due to the
inherent concurrency: the programmer must defend against all possible interleav-
ings of messages between agents. In response to this challenge, recent years have
seen multiple approaches to verifying AED-like programs, e.g. by delaying send
actions, or temporarily bounding their number (to keep queue sizes small) [14,9],
or by reasoning about a small number of representative execution schedules, to
avoid interleaving explosion [6].

In this paper we consider the P language for AED programming [15]. A P pro-
gram consists of multiple state machines running in parallel. Each machine has
a local store, and a message queue through which it receives events from other
machines. P allows the programmer to formulate safety specifications via a state-
ment that asserts some predicate over the local state of a single machine. Verify-
ing such reachability properties of course requires reasoning over global system
behavior and is, for unbounded-queue P programs, undecidable [10].

2 Authors: Anonymous

The unboundedness of the reachable state space does not prevent the use of
testing tools that try to explore as much of the state space as possible [17,3,15,8]
in the quest for bugs. Somewhat inspired by this kind of approach, the goal of this
paper is a verification technique that can (sometimes) prove a safety property,
despite exploring only a finite fraction of that space. Our approach is as follows.
Assuming that the machines’ queues are the only source of unboundedness, we
consider a bound k on the queue size, and exhaustively compute the reachable
states of the resulting finite-state problem, checking the local assertion Φ along
the way. We then increase the queue bound until (an error is found, or) we
reach some point kmax of convergence: a point that allows us to conclude that
increasing k further is not required to prove Φ.

What kind of “convergence” are we targeting? The sequence (Rk)∞k=0 of
reachable global states in general grows without bound. Instead, we design a
sequence (Rk)∞k=0 of abstractions of each reachability set over a finite abstract
state space. Due to the monotonicity of sequence (Rk)∞k=0, this ensures con-
vergence, i.e. the existence of kmax such that RK = Rkmax for all K ≥ kmax.
Provided that an abstract state satisfies Φ exactly if all its concretizations do,
we have: if all abstract states in Rkmax

comply with Φ, then so do all reachable
concrete states of P—we have proved the property.

We implement this strategy using an abstraction function α with a finite
co-domain that leaves the local state of a machine unchanged and maintains
the first occurrence of each event in the queue; repeat occurrences are dropped.
This abstraction preserves properties over the local state and the head of the
queue, i.e. the visible (to the machine) part of the state space, which is typically
sufficient to express reachability properties.

The abstract reachability sets Rk could be determined approximately, as the
fixpoint under an appropriate abstract image operation Im [13]. In this paper,
however, we compute each Rk exactly, by first determining the exact concrete
set Rk (which is finite and computable), and then obtaining Rk as α(Rk).

The second major step in our approach is the detection of the point of con-
vergence of (Rk)∞k=0

1: We show that, for the best abstract transformer Im [13,30,
see Sec. 4.2], if Im(Rk) ⊆ Rk, then RK = Rk for all K ≥ k. In fact, we have
a stronger result: under an easy-to-enforce condition, it suffices to consider ab-
stract dequeue operations: all others, namely enqueue and local actions, never
lead to abstract states in Rk+1 \Rk. The best abstract transformer for dequeue
actions is efficiently implementable for a given P program.

It is of course possible that the convergence condition Im(Rk) ⊆ Rk never
holds (the problem is undecidable). This manifests in the presence of a spurious
abstract state in the image produced by Im, i.e. one whose concretization does
not contain any reachable state. Our third contribution is a technique to assist
users in eliminating such states, enhancing the chances for convergence. We
have observed that spurious abstract states are often due to violations of simple
machine invariants: invariants of a single machine, irrespective of the behavior

1 Note that simply stopping as soon as Rk = Rk+1 is unsound; see Sec. 4.2.

Verifying AED Programs Using Partial Abstract Transformers 3

of other machines. By their nature, machine invariants can be proved using a
cheap sequential analysis.

We can eliminate an abstract state (e.g. produced by Im) if all its concretiza-
tions violate a machine invariant. In this paper, we propose a domain-specific
temporal logic to express invariants over machines with event queues and, more
importantly, an algorithm that decides the above abstract queue invariant check-
ing problem, by reducing it efficiently to a plain model checking problem. We
have used this technique to ensure the convergence in “hard” cases that otherwise
defy convergence of the abstract reachable states sequence.

We have implemented our technique for the P language and empirically eval-
uated it on an extensive set of benchmark programs. The experimental results
support the following conclusions: (i) for our benchmark programs, the sequence
of abstractions often converges fully automatically, in hard cases with minimal
designer support in the form of provable invariants; (ii) almost all examples con-
verges at a small value of kmax. This allows our method to succeed in practice.

Proofs and other supporting material can be found in the Appendix.

2 Overview

We illustrate the main ideas of this paper using an example in the P language.
A machine in a P program consists of multiple states. Each state defines an entry
code block that is executed when the machine enters the state. The state also
defines handlers for each event type e that it is prepared to receive. A handler
can either be on e do foo (executing foo on receiving e), or ignore e (dequeuing
and dropping e). A state can also have a defer e declaration; the semantics is that
a machine dequeues the first non-deferred event in its queue. As a result, a queue
in a P program is not strictly FIFO. This relaxation is an important feature of
P that helps programmers express their logic compactly [15]. Fig. 1 shows a P
program named PiFl , in which a Sender (eventually) floods a Receiver’s queue
with Ping events. This queue is the only source of unboundedness in PiFl .

A critical property for P programs is (bounded) responsiveness: the receiving
machine must have a handler (e.g. on, defer, ignore) for every event arriving at the
queue head; otherwise the event will come as a “surprise” and crash the machine.
To prove responsiveness for PiFl , we have to demonstrate (among others) that
in state Ignore it, the head of the Receiver’s queue is always Ping. We cannot
perform exhaustive model checking, since the set of reachable states is infinite.
Instead, we will compute a conservative abstraction of this set that is precise
enough to rule out Prime or Done events at the queue head in this state.

We first define a suitable abstraction function α that collapses repeated oc-
currences of events to each event’s first occurrence. For instance, the queue

Q = Prime.Prime.Prime.Done.Ping.Ping.Ping.Ping (1)

will be abstracted to Q = α(Q) = Prime.Done.Ping. The finite number of
possible abstract queues is 1 + 3 + 3 · 2 + 3 · 2 · 1 = 16. The abstraction preserves

4 Authors: Anonymous

1 even t Prime , Done , Ping ;
2

3 machine Sender {
4 va r receiver : machine ;
5 s t a r t s t a t e I n i t {
6 e n t r y {
7 receiver = new Receiver () ;
8 }
9 goto Prime i t ;

10 }
11 s t a t e Prime i t {
12 e n t r y {
13 va r i : i n t ;
14 wh i l e (i < 3) { // 3x Prime
15 send receiver , Prime ; i = i + 1 ;
16 }
17 send receiver , Done ; goto Ping i t ;
18 }
19 }

20 s t a t e Ping i t {
21 e n t r y {
22 send receiver , Ping ; goto Ping i t ;
23 }
24 }
25 }
26

27 machine Receiver {
28 s t a r t s t a t e I n i t {
29 d e f e r Prime ;
30 on Done goto I g n o r e i t ;
31 }
32

33 s t a t e I g n o r e i t {
34 i g n o r e Prime, Ping ;
35 }
36 }

Fig. 1. PiFl : a Ping-Flood scenario. The Sender and the Receiver communicate via
events of types Prime, Done, and Ping. After sending some Prime events and one
Done, the Sender floods the Receiver with Pings. The Receiver initially defers Primes.
Upon receiving Done it enters a state in which it ignores Ping.

the head of the queue. This and the machine state is enough information to
check responsiveness.

We now generate the sequence Rk of abstractions of the reachable states
sets Rk for queue size bounds k = 0, 1, 2, . . ., by computing each finite set Rk,
and then Rk as α(Rk). The obtained monotone sequence (Rk)∞k=0 over a finite
domain will eventually converge, but we must prove that it has. This is done
by applying the best abstract transformer Im, restricted to dequeue operations
(defined in Sec. 4.2), to the current set Rk, and confirming that the result is
contained in Rk.

As it turns out, the confirmation fails for the PiFl program: k = 5 marks
the first time set Rk repeats, i.e. R4 = R5, so we are motivated to run the
convergence test. Unfortunately we find a state s̄ ∈ Im(R5) \ R5, preventing
convergence. Our approach now offers two remedies to this dilemma. One is to
refine the queue abstraction. In our implementation, function α is really αp,
for a parameter p that denotes the size of the prefix of the queue that is kept
unchanged by the abstraction. For example, for the queue from Eq. (1) we have
α4(Q) = Prime.Prime.Prime.Done | Ping, where | separates the prefix from
the “infinite tail” of the abstract queue. This refinement maintains finiteness
of the abstraction and increases precision, by revealing that the queue starts
with three Prime events; see Sec. 4.1 for a general motivation of this feature.
Re-running the analysis for the PiFl program with p = 4, at k = 5 we find
Im(R5) ⊆ R5, and the proof is complete.

The second remedy to the failed convergence test dilemma is more powerful
but also less automatic. Inspecting the abstract state s̄ ∈ Im(R5) \ R5 that
foils the test (reverting to prefix p = 0), we find that it features a Done event
followed by a Prime event in the Receiver’s queue. A simple static analysis of the
Sender’s machine in isolation shows that it permits no path from the send Done

Verifying AED Programs Using Partial Abstract Transformers 5

to the send Prime statement. The behavior of other machines is irrelevant for
this invariant; we call it a machine invariant. We pass the invariant to our tool
via the command line using the expression

G (Done⇒ G¬Prime) (2)

in a temporal-logic like notation called QuTL (Sec. 5.1), where G universally
quantifies over all queue entries. Our tool includes a QuTL checker that deter-
mines that every concretization of s̄ violates property (2), concluding that s̄
is spurious and can be discarded. This turns out to be sufficient for convergence.

3 Queue-(Un)Bounded Reachability Analysis

Communicating Queue Systems. We consider P programs consisting of a
fixed and known number n of machines communicating via event passing through
unbounded FIFO queues.2 For simplicity, we assume the machines are created
at the start of the program; dynamic creation at a later time can be simulated
by having the machine ignore all events until it receives a special creation event.

We model such a program as a communicating queue system (CQS). For-
mally, given n ∈ N, a CQS Pn is a collection of n queue automata (QA)
Pi = (Σ,Li,Act i, ∆i, `

I
i), 1 ≤ i ≤ n. A QA consists of a finite queue alpha-

bet Σ shared by all QA, a finite set Li of local states, a finite set Act i of action
labels, a finite set ∆i ⊆ Li × (Σ ∪ {ε}) × Act i × Li × (Σ ∪ {ε}) of transitions,
and an initial local state `Ii ∈ Li. An action label act ∈ Act i is of the form

• act ∈ {deq , loc}, denoting an action internal to Pi (no other QA involved)
that either dequeues an event (deq), or updates its local state (loc); or
• act = !(e, j), for e ∈ Σ, j ∈ {1, . . . , n}, denoting a transmission, where Pi (the

sender) adds event e to the end of the queue of Pj (the receiver).

The individual QA of a CQS model machines of a P program; hence we refer
to QA states as machine states. A transmit action is the only communication
mechanism among the QA.

Semantics. A machine state m of a QA is of the form (`,Q) ∈ L × Σ∗; state
mI = (`I , ε) is initial. We define machine transitions corresponding to internal
actions as follows (transmit actions are defined later at the global level):

(`, ε)
loc→ (`′, ε) ∈ ∆

(`,Q)→ (`′,Q)
for `, `′ ∈ L, Q ∈ Σ∗ (local)

(`, e)
deq→ (`′, ε) ∈ ∆

(`, eQ)→ (`′,Q)
for `, `′ ∈ L, e ∈ Σ, Q ∈ Σ∗ (dequeue)

2 The P language in principle permits unbounded machine creation, a feature that we
do not consider here as it is not used in any of the benchmarks we are aware of.

6 Authors: Anonymous

A (global) state s of a CQS is a tuple 〈(`1,Q1), . . . , (`n,Qn)〉 where (`i,Qi) ∈
Li × Σ∗ for i ∈ {1, . . . , n}. State sI = 〈(`I1, ε), . . . , (`In, ε)〉 is initial. We extend
the machine transition relation → to states as follows:

〈(`1,Q1), . . . , (`n,Qn)〉 → 〈(`′1,Q′1), . . . , (`′n,Q′n)〉

if there exists i ∈ {1, . . . , n} such that one of the following holds:

(internal) (`i,Qi)→ (`′i,Q′i), and for all k ∈ {1, . . . , n}\{i}, `k = `′k, Qk = Q′k;

(transmission) there exists j ∈ {1, . . . , n} and e ∈ Σ such that:

1. (`i, ε)
!(e,j)−−−→ (`′i, ε) ∈ ∆i ;

2. Q′j = Qje ;

3. `′k = `k for all k ∈ {1, . . . , n} \ {i} ; and

4. Q′k = Qk for all k ∈ {1, . . . , n} \ {j} .

The execution model of a CQS is strictly interleaving. That is, in each step, one
of the two above transitions (internal) or (transmission) is performed for a
nondeterministically chosen machine i.

Queue-bounded and queue-unbounded reachability. Given a CQS Pn, a
state s = 〈(`1,Q1), . . . , (`n,Qn)〉, and a number k, the queue-bounded reachabil-
ity problem (for s and k) determines whether s is reachable under queue bound k,
i.e. whether there exists a path s0 → s1 . . .→ sz such that s0 = sI , sz = s, and
for i ∈ {0, . . . , z}, all queues in state si have at most k events. Queue-bounded
reachability for k is trivially decidable, by making enqueue actions for queues of
size k blocking (the sender cannot continue), which results in a finite state space.
We write Rk = {s : s is reachable under queue bound k}.

Queue-bounded reachability will be used in this paper as a tool for solving our
actual problem of interest: Given a CQS Pn and a state s, the Queue-UnBounded
reachability Analysis (QUBA) problem determines whether s is reachable, i.e.
whether there exists a path from sI to s (without queue bound). The QUBA
problem is undecidable [10]. We write R for the set of reachable states.

Obs. 1 Given a CQS Pn and k ∈ N, Rk ⊆ R.

That is, queue-bounded underapproximates queue-unbounded reachability.

4 Convergence Detection using Partial Abstract Transformers

In this section, we formalize our approach to detecting the convergence of a
suitable sequence of observations about the states Rk reachable under k-bounded
semantics. We define the observations as abstractions of those states, resulting
in sets Rk. We then investigate the convergence of the sequence (Rk)∞k=0.

Verifying AED Programs Using Partial Abstract Transformers 7

4.1 List Abstractions of Queues

Our abstraction function applies to queues, as defined below. Its action on ma-
chine and system states then follows from the hierarchical design of a CQS. Let
|Q| denote the number of events in Q, and Q[i] the ith event in Q (0 ≤ i < |Q|).
For example, Q[0] denotes the event at the head of a non-empty queue.

Def. 2 For a parameter p ∈ N, the list abstraction function αp : Σ∗ 7→ Σ∗ is
defined as follows:

1. αp(ε) = ε.
2. For a non-empty queue Q = P · e,

αp(Q) =

{
αp(P) if there exists j s.t. p ≤ j < |Q| and Q[j] = e
αp(P) · e otherwise

. (3)

Intuitively, αp abstracts a queue by leaving its first p events unchanged. Starting
from position p it keeps only the first occurrence of each event e in the queue, if
any; repeat occurrences are dropped.3 The preservation of existence and order
of the first occurrences of all present events motivates the term list abstraction.
The motivation for parameter p is that many protocols proceed in rounds of
repeating communication patterns, involving a bounded number of message ex-
changes. If p exceeds that number, the list abstraction’s loss of information may
be immaterial.

We write an abstract queue Q = αp(Q) in the form Q = pref |suff such that
p = |pref |, and refer to pref as Q’s prefix (which it shares with Q), and suff as
Q’s suffix.

Ex. 3 The queues Q ∈ {bbbba, bbba, bbbaa} are α2-equivalent: α2(Q) = bb |ba.

We extend αp to act on a machine state via αp(`i,Qi) = (`i, αp(Qi)), on a
state via αp(s) = 〈(`1, αp(Q1)), . . . , (`n, αp(Qn))〉, and on a set of states point-
wise via αp(S) = {αp(s) : s ∈ S}.

Discussion. The abstract state space is finite since the queue prefix is of fixed
size, and each event in the suffix is recorded at most once (the event alphabet is
finite). The sets of reachable abstract states grow monotonously with increasing
queue size bound k, since the sets of reachable concrete states do:

k1 ≤ k2 ⇒ Rk1 ⊆ Rk2 ⇒ αp(Rk1) ⊆ αp(Rk2) .

Finiteness and monotonicity guarantee convergence of the sequence of reachable
abstract states.

We say the abstraction function αp respects a property of a state if, for any
two αp-equivalent states (see Ex. 3), the property holds for both or for neither.
Function αp respects properties that refer to the local-state part of a machine,
and to the first p+1 events of its queue (which are preserved by αp). In addition,

3 Note that the head of the queue is always preserved by αp, for any p ≥ 0.

8 Authors: Anonymous

the property may look beyond the prefix and refer to the existence of events in
the queue, but not their frequency or their order.

The rich information preserved by the abstraction (despite being finite-state)
pays off in connection with the defer feature in the P language, which allows
machines to delay handling certain events at the head of a queue [15]. The
machine identifies the first non-deferred event in the queue, a piece of information
that is precisely preserved by the list abstraction (no matter what p).

Def. 4 Given an abstract queue Q = e0 . . . ep−1 |ep . . . ez−1, the concretization
function γp : Σ∗ → 2Σ

∗
maps Q to the language of the regular expression

REp(Q) := e0 . . . ep−1ep{ep}∗ep+1{ep, ep+1}∗ . . . ez−1{ep, . . . , ez−1}∗ , (4)

i.e. γp(Q) := L(REp(Q)).

In particular, we have REp(ε) = ε and hence γp(ε) = {ε} for the empty queue.
We extend γp to act on abstract (machine or global) states in a way analogous

to the extension of αp, by moving it inside to the queues occurring in those states.

4.2 Abstract Convergence Detection

Recall that finiteness and monotonicity of the sequence (Rk)∞k=0 guarantee its
convergence, so nothing seems more suggestive than to compute the limit. We
summarize our overall procedure to do so in Alg. 1. The procedure iteratively
increases the queue bound k and computes the concrete and (per αp-projection)
the abstract reachability sets Rk and Rk. If, for some k, an error is detected, the
procedure terminates (Lines 4–5; in practice implemented as an on-the-fly check).

Algorithm 1 Queue-unbounded reachability analysis

Input: CQS with transition relation → , p ∈ N, property Φ respected by αp.
1: compute R0; R0 := αp(R0)
2: for k := 1 to ∞ do
3: compute Rk; Rk := αp(Rk)
4: if ∃r ∈ Rk : r 6|= Φ then
5: return “error reachable with queue bound k”
6: if |Rk| = |Rk−1| then
7: T := (αp ◦ Imdeq ◦ γp)(Rk) B partial best abstract transformer
8: if T ⊆ Rk then
9: return “safe for any queue bound”

The key of the algorithm is reflected in Lines 6–9 and is based on the following
idea (all claims are proved as part of Thm. 5 below). If the computation of
Rk reveals no new abstract states in round k (Line 6; by monotonicity, “same
size” implies “same sets”), we apply the best abstract transformer [13,30] Im :=
αp ◦ Im→ ◦ γp to Rk: if the result is contained in Rk, the abstract reachability

Verifying AED Programs Using Partial Abstract Transformers 9

sequence has converged. However, we can do better: we can restrict the successor
function Im→ of the CQS to dequeue actions, denoted Imdeq in Line 7. The
ultimate reason is that firing a local or transmit action on two αp-equivalent
states r and s results again in αp-equivalent states r′ and s′. This fact does not
hold for dequeue actions: the successors r′ and s′ of dequeues depend on the
abstracted parts of r and s, resp., which may differ and become “visible” during
the dequeue (e.g. the event behind the queue head moves into the head position).
Our main result therefore is: if Rk = Rk−1 and dequeue actions do not create
new abstract states (Lines 7 and 8), sequence (Rk)∞k=0 has converged:

Thm. 5 If Rk = Rk−1 and T ⊆ Rk, then for any K ≥ k, RK = Rk.

We note that the theorem requires the condition Rk = Rk−1 (tested efficiently
in Line 6): without it, any action may lead to new reachable abstract states, not
just dequeues (see proof in App. A.1).

If the sequence of reachable abstract states has converged, then all reachable
concrete states (any k) belong to γp(Rk) (for the current k). Since the abstraction
function αp respects property Φ, we know that if any reachable concrete state
violated Φ, so would any other concrete state that maps to the same abstraction.
However, for each abstract state in Rk, Line 4 has examined at least one state r
in its concretization; a violation was not found. We conclude:

Cor. 6 Line 9 of Alg. 1 correctly asserts that no reachable concrete state of the
given CQS violates Φ.

The corollary (along with the earlier statement about Lines 4–5) confirms the
partial correctness of Alg. 1. The procedure is, however, necessarily incomplete:
if no error is detected and the convergence condition in Line 8 never holds, the
for loop will run forever.

We conclude this part with two comments. First, note that we do not compute
the sets Rk as reachability fixpoints in the abstract domain (i.e. the domain
of αp). Instead, we compute the concrete reachability sets first, and then obtain
the Rk via projection (Line 1). The reason is that the projection gives us the
exact set of abstractions of reachable concrete states, while an abstract fixpoint
likely overapproximates (for instance, the best abstract transformer from Line 7
does) and loses precision. Note that a primary motivation for computing abstract
fixpoints, namely that the concrete fixpoint may not be computable, does not
apply here: the concrete domains are finite, for each k.

Second, we observe that this projection technique comes with a cost: sequence
(Rk)∞k=0 may stutter at intermediate moments: Rk (Rk+1 = Rk+2 (Rk+3.
The reason is that Rk+3 is not obtained as a functional image of Rk+2, but by
projection from Rk+3. As a consequence, we cannot short-cut the convergence
detection by just “waiting” for (Rk)∞k=0 to stabilize, despite the finite domain.

4.3 Computing Partial Best Abstract Transformers

Recall that in Line 7 we compute

T = Imdeq(Rk) = (αp ◦ Imdeq ◦ γp)(Rk) . (5)

10 Authors: Anonymous

The line applies the best abstract transformer, restricted to dequeue actions,
to Rk. This result cannot be computed as defined in (5), since γp(Rk) is typi-
cally infinite. However, Rk is finite, so we can iterative over r̄ ∈ Rk, and little
information is actually needed to determine the abstract successors of r̄. The “in-
finite fragment” of r̄ remains unchanged, which makes the action implementable.

Formally, let r̄ = (`,Q) with Q = e0e1 . . . ep−1 | epep+1 . . . ez−1. To apply a
dequeue action to r̄, we first perform local-state updates on ` as required by the
action, resulting in `′. Now consider Q. The first suffix event, ep, moves into the
prefix due to the dequeue. We do not know whether there are later occurrences
of ep before or after the first suffix occurrences of ep+1 . . . ez−1. This information
determines the possible abstract queues resulting from the dequeue. To compute
the exact best abstract transformer, we enumerate these possibilities:

Imdeq({(`,Q)}) =

{ (`′,Q′) : Q′ ∈

e1 . . . ep |ep+1ep+2 . . . ez−1
e1 . . . ep | ep ep+1ep+2 . . . ez−1

e1 . . . ep |ep+1 ep ep+2 . . . ez−1
...

e1 . . . ep |ep+1ep+2 . . . ez−1 ep

}

The first case for Q′ applies if there are no occurrences of ep in the suffix after
the dequeue. The remaining cases enumerate possible positions of the first oc-
currence of ep (boxed, for readability) in the suffix after the dequeue. The cost
of this enumeration is linear in the length of the suffix of the abstract queue.

Since our list abstraction maintains the first occurrence of each event, the
semantics of defer (see the Discussion in Sec. 4.1) can be implemented abstractly
without loss of information (not shown above, for simplicity).

5 Abstract Queue Invariant Checking

The abstract transformer function in Sec. 4 is used to decide whether sequence
(Rk)∞k=0 has converged. Being an overapproximation, the function may gener-
ate spurious states: they are not reachable, i.e. no concretization of them is.
Unfortunate for us, spurious abstract states always prevent convergence.

A key empirical observation is that concretizations of spurious abstract states
often violate simple machine invariants, which can be proved Ptolemaically [12],
i.e. from the perspective of a single machine, while collapsing all other machines
into a nondeterministically behaving environment. Consider our example from
Sec. 2 for p = 0. It fails to converge since Line 7 generates an abstract state s̄ that
features a Done event followed by a Prime event in the Receiver’s queue. A very
light-weight static analysis proves that the Sender’s machine permits no path
from the send Done to the send Prime statement. Since every concretization
of s̄ features a Done followed by a Prime event, the abstract state s̄ is spurious
and can be eliminated.

Verifying AED Programs Using Partial Abstract Transformers 11

Our tool assists users in discovering candidate machine invariants, by fa-
cilitating the inspection of states in T \ Rk (which foil the test in Line 8). We
discharge such invariants separately, via a simple sequential model-check or static
analysis. In the section we focus on the more interesting question of how to use
them. Formally, suppose the P program comes with a queue invariant I, i.e. an
invariant property of concrete queues. The abstract invariant checking problem
is to decide, for a given abstract queue Q, whether every concretization of Q
violates I; in this case, and this case only, an abstract state containing Q can be
eliminated. In the following we define a language QuTL for specifying concrete
queue invariants, and then show how checking an abstract queue against a QuTL
invariant can be efficiently solved as a model checking problem.

5.1 Queue Temporal Logic (QuTL)

Our logic to express invariant properties of queues is a form of first-order linear-
time temporal logic. This choice is motivated by the logic’s ability to constrain
the order (via temporal operators) and multiplicity of queue events, the latter via
relational operators that express conditions on the number of event occurrences.
We introduce some light notation. We write Q[i →] (read: “Q from i”) for the
queue obtained from queue Q by dropping the first i events; if Q has fewer than
i events, Q[i →] is undefined.

Queue Relational Expressions. These are expressions of the form #e . c, where
e ∈ Σ (queue alphabet), . ∈ {<,≤,=,≥, >}, and c ∈ N is a literal natural
number. The value of a queue relational expression is defined as the Boolean

V (#e . c) = |{i ∈ N : 0 ≤ i < |Q| ∧ Q[i] = e}| . c (6)

where | · | denotes set cardinality and . is interpreted as the standard integer
arithmetic relational operator.

Def. 7 (Syntax of QuTL) The following are QuTL formulas:

– false and true;
– for e ∈ Σ, both e and ¬e;
– for a queue relational expression E, both E and ¬E;
– for a QuTL formula φ, all of Xφ, Fφ, Gφ.

The set QuTL is the closure under disjunction of the above set of formulas.

See the discussion below Def. 9 on the use of conjunction and negation.

Def. 8 (Concrete semantics of QuTL) Queue Q satisfies QuTL formula φ,
written Q |= φ, depending on the form of φ as follows.

– Q |= true.
– for e ∈ Σ, Q |= e iff |Q| > 0 and Q[0] = e; Q |= ¬e iff Q 6|= e.
– for a relational expression E, Q |= E iff V (E) = true; Q |= ¬E iff Q 6|= E.

12 Authors: Anonymous

– Q |= Xφ iff |Q| > 0 and Q[1 →] |= φ.
– Q |= Fφ iff there exists i ∈ N such that 0 ≤ i < |Q| and Q[i →] |= φ.
– Q |= Gφ iff for all i ∈ N such that 0 ≤ i < |Q|, Q[i →] |= φ.
– Q |= φ1 ∨ φ2 iff Q |= φ1 or Q |= φ2.

No other pair (Q, φ) satisfies Q |= φ.

For instance, formula #e ≤ 3 is true exactly for queues containing at most 3 e’s,
and G(#e ≥ 1) is true of Q iff Q is empty or its final event is e. See App. B for
more examples.

Algorithmically checking whether a concrete queue Q satisfies a QuTL for-
mula φ is straightforward, since Q is of fixed size and straight-line. The situation
is different with abstract queues. Our motivation here is to declare that an ab-
stract queue Q violates a formula φ if all its concretizations do: under this
condition, if φ is an invariant, we know Q is not reachable. Equivalently:

Def. 9 (Abstract semantics of QuTL) Abstract queue Q satisfies QuTL
formula φ, written Q |=α φ, if there exists a concretization of Q that satisfies φ:

Q |=α φ := ∃Q ∈ γ(Q) : Q |= φ . (7)

For example, given p = 2, we have bb | ba |=α G(a ⇒ G¬b) since for instance
bbba ∈ γ(bb |ba) satisfies the formula. See App. B for more examples.

Note that the existential flavor of |=α implies that |=α does not distribute
over conjunction; see Ex. 13 in App. B.1 (analogously, LTL satisfaction does
not distribute over disjunction). To keep the abstract model checking algorithm
simple and compositional, Def. 7 excludes conjunction as a Boolean connective
in QuTL, and allows negation only in front of atomic formulas.

5.2 Abstract QuTL Model Checking

Model checking an abstract queue Q against a QuTL formula φ, i.e. checking
whether some concretization of Q satisfies φ, can be reduced to a standard
model checking problem over a labeled transition system (LTS) M = (S, T, L)
with states S, transitions T , and a labeling function L : S → 2Σ . The LTS char-
acterizes the concretization γ(Q) of Q, as illustrated in Fig. 2 using an example:
the concretizations of Q are exactly the “traces” generated by paths of Q’s LTS
that end in the double-circled green state.

The straightforward construction of the LTS M is formalized in App. A.2.
Its size is linear in |Q|: |S| = p+ 2× (|Q| − p) + 1 and |T | = p+ 4× (|Q| − p).

We call a path through M complete if it ends in the right-most state sz of M
(green in Fig. 2). The labeling function extends to paths by pointwise application
to their states. This gives rise to the following characterization of γ(Q) (Def. 4).

Lem. 10 Given abstract queue Q over alphabet Σ, let M = (S, T, L) be its LTS.

γ(Q) = {L(q) ∈ Σ∗ | q is a complete path from s0 in M .} (8)

Verifying AED Programs Using Partial Abstract Transformers 13

s0 s1 s2

s2|3

s3

s3|4

s4

s4|5

s5

b b a

a

b

a, b

c

a, b, c

ε

Fig. 2. LTS for Q = bb | abc (p = 2), with label sets written underneath each state.
The blue and red parts encode the concretizations of the prefix and suffix of Q, resp.

Cor. 11 Let Q and M as in Lem. 10, and φ a QuTL formula. Then the following
are equivalent.

1. Q |=α φ.
2. There exists a complete path q from s0 in M such that L(q) |= φ.

Proof. immediate from Def. 9 and Lem. 10. �

Given an abstract queue Q, its LTS M , and a QuTL formula φ, our abstract
queue model checking algorithm is based on Cor. 11: we need to find a complete
path from s0 in M whose labeling satisfies φ. This is similar to standard model
checking against existential temporal logics like ECTL, with two particularities:

First, paths must be complete. This poses no difficulty, as completeness is
suffix-closed: a path ends in sz iff any suffix does. This implies that temporal
reductions on QuTL formulas work like in standard temporal logics. For example:
there exists a complete path π from s0 in M such that L(π) |= Xψ iff for some
successor s1 of s0, there exists a complete path π′ from s1 such that L(π′) |= ψ.
Similar reductions apply to eventualities F and invariants G.

Second, we have domain-specific atomic (non-temporal) propositions. These
are accommodated as follows, for an arbitrary start state s ∈ S:

∃π : π from s complete and L(π) |= e (for e ∈ Σ):
this is true iff e ∈ L(s), as is immediate from the Q |= e case in Def. 8.

∃π : π from s complete and L(π) |= ¬e (for e ∈ Σ):
this is true iff L(s) 6= {e}: this condition states that either L(s) = ∅ (e.g.
for the empty queue), or there exists some label other than e in L(s), so the
existential property ¬e holds.

∃π : π from s complete and L(π) |= #e > c (for e ∈ Σ, c ∈ N):
this is true iff
– the number of states reachable from (= to the right of) s labeled with e

is greater than c, or
– there exists a state reachable from s labeled with e that has a self-loop.

The other relational expressions #e . c and their negations can be checked
using similar state counting techniques. �

14 Authors: Anonymous

Table 1. Results: #M : #P machines; Loc: #lines of code; Safe? = 3: property holds;
p: minimum unabstracted prefix for required convergence; kmax: point of convergence or
exposed bugs (– means divergence); Time: runtime (sec); Mem.: memory usage (Mb.).

ID/Program
Program Features Pat

#M Loc Safe? p kmax T ime Mem.

1/German-1 3 242 3 4 − TO −
2/German-2 4 244 3 4 − TO −
3/TokenRing-buggy 6 164 7 0 2 241.44 35.96

4/TokenRing-fixed 6 164 3 0 4 1849.25 130.87

5/FailureDetector 6 229 3 0 4 83.99 12.38

6/OSR 5 378 3 0 5 77.92 44.86

7/openWSN 6 294 3 2 5 2574.25 376.29

ID/Program
Program Features Pat

#M Loc Safe? p kmax T ime Mem.

8/Failover 4 132 3 0 2 2.91 8.56

9/MaxInstances 4 79 3 0 3 0.14 0.56

10/PingPong 2 76 3 0 3 0.06 0.43

11/BoundedAsync 4 96 3 0 5 203.39 29.32

12/PingFlood 2 52 3 4 5 0.11 0.43

13/Elevator-buggy 4 270 7 0 1 1.29 5.23

14/Elevator-fixed 4 271 3 0 4 49.23 45.36

6 Empirical Evaluation

We implemented the proposed approaches in C# atop the bounded model checker
PTester [15], an analysis tool for P programs. PTester employs a similar bounded
exploration strategy as Zing [5]. We denote by Pat the implementation of Alg. 1,
and by Pat+I the version with queue invariants (“Pat+ Invariants”). A detailed
introduction to the tool design and implementation is available online [26].

Experimental Goals. We evaluate the approaches against the following questions:

Q1. Is Pat effective: does it converge for many programs? for what values of k?
Q2. What is the impact of the QuTL invariant checking?

Experimental Setup. We collected an extensive set of P programs; most of these
have been used in previous publications. We describe them briefly as follows:

1–5: a set of protocols implemented in P: the German Cache Coherence proto-
col with different number of clients (1–2) [15], a buggy version of a token
ring protocol [15], and a fixed version (3–4), and a failure detector protocol
from [1] (5).

6–7: two device drivers where OSR is used for testing USB devices [14].
8–14: miscellaneous: 8–10 [1], 11 [18], 12 is the example from Sec. 2, 13–14

are the buggy and fixed versions of an Elevator controller [15].

We conduct two types of experiments: (i) we run Pat on each benchmark to
empirically answer Q1; (ii) we run Pat+I on the examples which fail to verify
in (i) to answer Q2. All experiments are performed on a 2.80 GHz Intel(R)
Core(TM) i7-7600 machine with 8 GB memory, running 64-bit Windows 10.
The timeout is set to 3600sec (1h); the memory limit to 4 GB. All benchmarks
and results are available online [26].

Results. In Table 1, column Pat details the results of our basic approach. We
first observe that Pat converges on almost all safe examples (and successfully

Verifying AED Programs Using Partial Abstract Transformers 15

exposes the bugs for unsafe ones). Second, in most cases, the kmax where con-
vergence was detected is small: 5 or less. This is what enables the use of this
technique in practice: the exploration space grows fast with k, so “early” con-
vergence is critical. Note that kmax is the smallest value for which the respective
example converges. For the converging examples, the verification succeeded fully
automatically: the queue abstraction prefix parameter p is incremented in a loop
whenever the current value of p caused a spurious abstract state.

The German protocol does not converge in reasonable time. In this case, we
request minimal manual assistance from the designer. Our tool inspects spurious
abstract states, compares them to actually reached abstract states, and suggests
candidate invariants to exclude them. We found that these candidates can often
be proved by a sequential or static analysis, as in Sec. 2. We describe the process
of invariant discovery, and why and how they are easy to prove, in [26].

The following table shows the invariants that make the German protocol
converge, and the resulting times and memory consumption.

Program p kmax Time Mem. Invariant
German-1 0 4 15.65 45.65 Server: #req excl ≤ 1 ∧#req share ≤ 1
German-2 0 4 629.43 284.75 Client: #ask excl ≤ 1 ∧#ask share ≤ 1

The invariant states that there is always at most one exclusive request and
at most one shared request in the Server machine’s queue4.

Performance Evaluation. We finally consider the following question: To perform
full verification, how much overhead does Pat incur compared to PTester? We
pass kmax (from Table 1) as an upper bound to PTester and perform bounded
model checking. The figure
on the right compares the
running times of Pat and
PTester. We observe that the
difference is small, in all cases.
This suggests that turning
the systematic PTester into a
full verifier comes with little
extra cost, if any.

PTester PAT
3 193.44 241.44
4 1499.52 1849.25
5 35.81 83.99
6 46.11 77.92
7 1847.64 2643.21
8 2.21 2.56
9 0.19 0.14
10 0.11 0.09
11 103.76 203.39
12 0.25 0.19
13 1.3 1.29
14 30.78 44.110.01

0.1

1

10

100

1000

3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
(S

ec
.)

Benchmark ID

PTester PAT

7 Related Work

Automatic verification for asynchronous event-driven programs communicating
via unbounded FIFO queues is undecidable [10], even when the agents are finite-
state machines. To sidestep the undecidability, various remedies are proposed
which mainly focus on two directions. One is to consider decidable subclasses, by
restricting the type of communication, like when the communication is lossy [4],
half-dumplex [11], rendezvous [7], when the communication is via a bag of mes-
sages instead of a FIFO queue [31,20], when only a single kind of message is

4 The two invariants express the same property, but for different machines.

16 Authors: Anonymous

allowed in the queue [28], or when the communication adheres to a forest archi-
tecture [22]. We do not have such restrictions in this paper.

The other direction is to underapproximate program behaviors using var-
ious bounding techniques; examples include depth- [19] and context-bounded
analysis [29,23,24], delay-bounding [17], bounded asynchrony [18], preemption-
bounding [27], and phase-bounded analysis [8,3]. All above bounding techniques
systematically explore an artificially bounded space of reachable states. It has
been shown that most of these bounding techniques admit a decidable model
checking probleme [29,23,24]. These techniques have been successfully used in
practice for finding bugs. They may however miss bugs that manifest after reach-
ing the respective bounds. The goal of our approach is to obtain conclusive results
at least in some cases.

Our approach can be categorized as a cutoff detection technique [16,2]. Cut-
offs are, however, typically determined statically, often leaving them too large
for practical verification. Aiming at minimal cutoffs, our work is closer in na-
ture to earlier dynamic strategies [21,25], which targeted forms of multi-threaded
shared-memory programs, not concurrent agents asynchronously communicating
via unbounded queues. The generator technique proposed in [25] is unlikely to
work for P programs, due to the large local state space of machines.

Several partial verification approaches for asynchronous message-passing pro-
grams have been recently presented [14,6,9]. In [6], Bakst et al. propose canoni-
cal sequentialization, which avoids exploring all interleavings by sequentializing
concurrent programs. The approach is based on an observation that correct pro-
grams tend to be well-structured and hence requires programs to validate several
structural properties. Desai et al [14] propose an alternative way to avoid rea-
soning about all interleavings, namely by prioritizing receive actions over send
actions. The approach is complete in the sense that it is able to construct almost-
synchronous invariants that cover all reachable local states and hence suffice to
prove local assertions. In the worst case, however, it needs to explore all inter-
leavings. Similarly, Bouajjani et al. [9] propose an iterative bounded analysis by
bounding send actions in each interaction phase. It approaches the completeness
by checking a program’s synchronizability under the bounds. The synchronizabil-
ity, in turn, allows concluding the program’s correctness if no violation occurs.
Similar to our work, all above three work are sound and incomplete. An exper-
imental comparison against the techniques reported in [14,9] suffers from the
unavailability of a tool that implements them.

8 Conclusion

We have presented a method to verify safety properties of asynchronous event-
driven programs of agents communicating via unbounded queues. Our approach
is sound but incomplete: it can both prove (or, by encountering bugs, disprove)
such properties but may not terminate. We empirically evaluate our method on
a collection of P programs. Our experimental results showcase our method can
successfully prove the correctness of programs; such proof is achieved with little

Verifying AED Programs Using Partial Abstract Transformers 17

extra resource costs compared to plain state exploration. Future work includes
an extension to P programs with other sources of unboundedness than the queue
length (e.g. messages with integer payloads). We plan to address this by a form
of predicate abstraction.

References

1. https://github.com/p-org/p
2. Abdulla, A.P., Haziza, F., Hoĺık, L.: All for the price of few (parameterized verifi-

cation through view abstraction). In: VMCAI. pp. 476–495 (2013)
3. Abdulla, P.A., Atig, M.F., Cederberg, J.: Analysis of message passing programs

using smt-solvers. In: ATVA. pp. 272–286 (2013)
4. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: CON-

CUR. pp. 114–129 (1999)
5. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A model checker

for concurrent software. In: CAV. pp. 484–487 (2004)
6. Bakst, A., Gleissenthall, K.v., Kici, R.G., Jhala, R.: Verifying distributed programs

via canonical sequentialization. PACMPL 1(OOPSLA), 110:1–110:27 (Oct 2017)
7. Basu, S., Bultan, T., Ouederni, M.: Synchronizability for verification of asyn-

chronously communicating systems. In: Verification, Model Checking, and Abstract
Interpretation. pp. 56–71. Berlin, Heidelberg (2012)

8. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.
Int. J. Softw. Tools Technol. Transf. 16(2), 127–146 (Apr 2014)

9. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying mes-
sage passing programs under bounded asynchrony. In: CAV. pp. 372–391 (2018)

10. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (Apr 1983)

11. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication.
Information and Computation 202(2), 166 – 190 (2005)

12. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy right: The environment ab-
straction framework for model checking concurrent systems. In: TACAS. pp. 33–47
(2008)

13. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL. pp. 269–282 (1979)

14. Desai, A., Garg, P., Madhusudan, P.: Natural proofs for asynchronous programs
using almost-synchronous reductions. In: OOPSLA. pp. 709–725 (2014)

15. Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S., Zufferey, D.: P: Safe
asynchronous event-driven programming. In: PLDI. pp. 321–332 (2013)

16. Emerson, E., Kahlon, V.: Reducing model checking of the many to the few. In:
CADE. vol. 1831, pp. 236–254 (2000)

17. Emmi, M., Qadeer, S., Rakamarić, Z.: Delay-bounded scheduling. pp. 411–422.
POPL (2011)

18. Fisher, J., Henzinger, T.A., Mateescu, M., Piterman, N.: Bounded asynchrony:
Concurrency for modeling cell-cell interactions. In: Formal Methods in Systems
Biology. pp. 17–32 (2008)

19. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
POPL. pp. 174–186 (1997)

20. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL. pp. 339–350 (2007)

18 Authors: Anonymous

21. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: CAV. pp. 645–659 (2010)

22. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: TACAS. pp. 299–314 (2008)

23. La Torre, S., Parthasarathy, M., Parlato, G.: Analyzing recursive programs using
a fixed-point calculus. In: PLDI. pp. 211–222 (2009)

24. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. Form. Methods Syst. Des. 35(1), 73–97 (Aug 2009)

25. Liu, P., Wahl, T.: CUBA: Interprocedural context-unbounded analysis of concur-
rent programs. In: PLDI. pp. 105–119 (2018)

26. Liu, P., Wahl, T., Lal, A.: https://www.khoury.northeastern.edu/home/lpzun/quba
27. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of

multithreaded programs. pp. 446–455. PLDI (2007)
28. Peng, W., Purushothaman, S.: Analysis of a class of communicating finite state

machines. Acta Informatica 29(6), 499–522 (Jun 1992)
29. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:

TACAS. pp. 93–107 (2005)
30. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.

In: VMCAI. pp. 252–266 (2004)
31. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-

chronous atomic methods. In: CAV. pp. 300–314 (2006)

Verifying AED Programs Using Partial Abstract Transformers 19

Appendix

A Proofs and Related Material

A.1 Proof of Theorem 5

Recall the definition of T :

T = {αp(s′) | ∃s ∈ γp(Rk) : s
deq→ s′} . (9)

Thm. 5 If Rk = Rk−1 and T ⊆ Rk, then for any K ≥ k, RK = Rk.

Proof : we need two lemmas.

Lem. 6 Given Rk = Rk−1 and T ⊆ Rk, we in fact have (Rk)′ ⊆ Rk, for the
full best abstract transformer image of Rk,

(Rk)′ = {αp(s′) | ∃s ∈ γp(Rk) : s→ s′} . (10)

Eq. (10) is identical to Eq. (9), except that it permits all CQS transitions in →,
not just those due to dequeue actions.
Proof : we show (Rk)′ \Rk ⊆ T . From this fact and the given T ⊆ Rk, we have
(Rk)′ \Rk ⊆ Rk, which is equivalent to (Rk)′ ⊆ Rk.

The above claim is equivalent to (Rk)′ \ T ⊆ Rk, which we now prove. Let
s̄′ ∈ (Rk)′ \ T , i.e. s̄′ = αp(s

′) for some s, s′, r such that s = γp(αp(r)) (hence

αp(s) = αp(r)), r ∈ Rk, and s
loc→ s′ or s

!→ s′ (local or transmit action). Since
αp(s) = αp(r), concrete states s and r agree in all machines’ local states, and in
the prefixes of length p+ 1 of all machines’ queues. We now attempt to execute
on r the action that takes s to s′. We distinguish what that action is:

Case s
loc→ s′: the internal action is executable on r (it does not depend on any

queue) and leads to a successor state r′ such that αp(r
′) = αp(s

′). From
r ∈ Rk we have r′ ∈ Rk (Rk = concrete reachability fixpoint), and thus
s̄′ = αp(s

′) = αp(r
′) ∈ αp(Rk) = Rk.

Case s
!→ s′: the transmit action is also executable on r, since it depends only

on the local state (on which s and r agree), and, under bounded seman-
tics, on the current size of the queue: we must make sure the queue
the action applies to is not full (of size k). This is the only place where we
need the condition Rk = Rk−1: it ensures that in fact r ∈ Rk−1, hence all
queues in r have at most k− 1 events. The enqueue action can proceed; the
rest of the proof is as in the previous case.

Observe that the above argument does not apply to dequeue actions: it is not
guaranteed that the states s′ and r′ obtained after applying the dequeue are
equivalent, i.e. that αp(s

′) = αp(r
′), because the exact events in the abstracted

parts of the queues are unknown and may differ.

20 Authors: Anonymous

Lem. 7 Given Rk = Rk−1 and (Rk)′ ⊆ Rk, we have for any K ≥ k, RK = Rk.

Proof : by induction on K. The claim holds for K = k. Now suppose RK = Rk;
we prove RK+1 = Rk, which is equivalent to RK+1 = RK . Since RK+1 ⊇ RK ,
it suffices to show that RK+1 ⊆ RK .

To this end, let a ∈ RK+1, i.e. a = αp(sa) for some sa ∈ RK+1. We show: for
all states s along the path π that reaches sa, αp(s) ∈ RK ; call this claim (*).
In particular, then, a = αp(sa) ∈ RK .

To show (*), we induct on the length of path π. The initial state belongs to
Rl for every l, so its abstraction belongs to RK . Let now s along π be such that
αp(s) ∈ RK . Since RK = Rk, we have s ∈ γp(Rk). By Eq. (10), the successor s′

of s along π satisfies αp(s
′) ∈ (Rk)′ ⊆ Rk = RK . �

Proof of Thm. 5:
From Rk = Rk−1, T ⊆ Rk and Lem. 6 we conclude (Rk)′ ⊆ Rk.
From Rk = Rk−1, (Rk)′ ⊆ Rk and Lem. 7 we conclude the claim in Thm. 5. �

A.2 Construction of the LTS for Abstract Queue Q

This construction is required for Lem. 10 (App. A.3). We formalize it as fol-
lows. If Q = ε, we let S = {s0}, T = ∅, L(s0) = {ε}. Otherwise, let Q =
e0 . . . ep−1 | ep . . . ez−1. We first define two separate LTS, Mp and Ms, for
prefix and suffix, resp., and then conjoin them to get M :

Sp = {si : 0 ≤ i < p} ,
Mp = (Sp, Tp, Lp) : Tp = {(si, si+1) : 0 ≤ i < p− 1} ,

Lp(si) = {ei} for i: 0 ≤ i < p

Ss = {si, si|i+1 : p ≤ i < z} ∪ {sz} ,
Ts = {(si, si|i+1), (si, si+1), (si|i+1, si|i+1),

(si|i+1, si+1) : p ≤ i < z}
Ms = (Ss, Ts, Ls) :

L[s](si) = {ei} for i: p ≤ i < z ,

Ts(si|i+1) = {ej : p ≤ j < i+ 1} for i: p ≤ i < z ,

Ls(sz) = {ε} .5

(11)

Now we define M = (S, T, L) with

S = Sp ∪ Ss , T = Tp ∪ {(sp−1, sp)} ∪ Ts , L = Lp ∪ Ls . (12)

A.3 Proof of Lem. 10

Lem. 10 Given abstract queue Q over alphabet Σ, let M = (S,R,L) be its LTS.

γ(Q) = {L(q) ∈ Σ∗ | q is a complete path from s0 in M .} (13)
5 Note: if p = z (empty suffix), Ms consists only of node sz (labeled ε) and no edges.

Verifying AED Programs Using Partial Abstract Transformers 21

Proof : by induction on |Q|. If Q = ε, then γ(Q) = L(ε) = {ε}. The only
complete path in M is q = s0 with L(s0) = ε, so L(q) = ε.

Now suppose Q = T .a, i.e. a is the final symbol of Q, and let MT be T ’s
LTS. MT is a sub-LTS (a “prefix” really) of M .

– If a is in the prefix of Q, i.e. the suffix of Q is empty, we have

γ(Q)
(D4)
= γ(T) · {a}

(IH)
= {L(t) ∈ Σ∗ | t is a complete path from s0 in MT } · {a}

where “D4” refers to Def. 4, and “IH” denotes the induction hypothesis.
Since M equals MT extended by an edge to an a-labeled state, with a unique
complete path, Eq. (8) follows.

– If a is in the suffix of Q, then let Σs be the set of suffix symbols of Q (in
particular, a ∈ Σs).

γ(Q)
(D4)
= γ(T) · {a} ·Σs∗

(IH)
= {L(t) ∈ Σ∗ | t is a complete path from s0 in MT } · {a} ·Σs

∗

By the LTS construction in Sec. 5.2, M equals MT with an a-labeled state
and a Σs-labeled state inserted before the right-most state, from which
Eq. (8) follows. �

B Additional Material

B.1 Examples for Sec. 5

Ex. 11 Here are some examples of QuTL formulas and their intuitive meanings.
Let Q be a queue; a⇒ b abbreviates ¬a ∨ b.

Satisfaction relation Meaning
Q |= #e ≤ 3 Q contains at most 3 e’s.
Q |= G(e1 ⇒ G¬e2) In Q, e1 is never (eventually) followed by e2.
Q |= F(#e < 2) Q is non-empty.
Q |= G(#e ≥ 2) Q is empty.
Q |= G(#e ≥ 1) Q is empty or its tail event is an e.

Ex. 12 Here are some examples of abstract (non-)satisfaction. As indicated,
these assume p = 2, i.e. the first two queue events (if any) are unabstracted.
Again, a⇒ b abbreviates ¬a ∨ b.

bb |ba |=α G(a⇒ G¬b)

since there is a concretization, for instance bbba, that satisfies the formula.

ac |b 6|=α G(a⇒ X b)

since the violation is caused by the prefix of queue (ac), so all concretizations
violate this formula.

22 Authors: Anonymous

Ex. 13 Relation |=α does not distribute over conjunction, i.e. Q |=α φ1 ∧ φ2
is not equivalent to Q |=α φ1 ∧ Q |=α φ2: Let Q = a | ab and φ = ψ ∧ ¬ψ
where ψ = (#a ≥ 3). Clearly, Q 6|=α φ since φ ≡ false. However, Q |=α ψ and
Q |=α ¬ψ both hold, witnessed by two distinct concrete queues Qψ = aaab and
Q¬ψ = aab.

	Verifying Asynchronous Event-Driven Programs Using Partial Abstract Transformers[gray][2mm] Verifying Asynchronous Event-Driven Programs With Unbounded-Queue Communication

