Unbounded-Thread Program Verification using Thread-State Equations

Konstantinos Athanasiou Peizun Liu Thomas Wahl

Northeastern University, Boston, MA

IJCAR 2016, University of Coimbra, Portugal

```
unsigned value, m = 0;
unsigned count() {
  unsigned v = 0;
 acquire(m);
  if(value == 0u-1) {
    release(m);
    return 0;
  }
 else {
   v = value;
   value = v + 1;
    release(m);
    assert (value > v);
    return v + 1;
  }
}
int main() {
 while(...)
    thread(&count);
}
```

inc.c

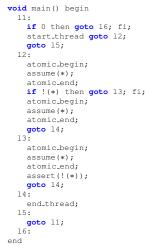
```
unsigned value, m = 0;
unsigned count() {
 unsigned v = 0;
  acquire(m);
  if(value == 0u-1) {
    release(m);
    return 0;
  else {
   v = value;
   value = v + 1;
   release(m);
   assert (value > v);
   return v + 1;
 }
int main() {
  while(...)
   thread(&count);
}
```

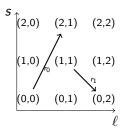


```
void main() begin
 11:
    if 0 then goto 16; fi;
    start_thread goto 12;
    goto 15;
 12:
    atomic_begin;
    assume(*);
    atomic_end;
    if !(*) then goto 13; fi;
    atomic_begin;
    assume(*);
    atomic_end;
    goto 14;
 13:
    atomic_begin;
    assume(*);
    atomic_end;
    assert(!(*));
    goto 14;
 14:
    end_thread;
 15.
    goto 11;
 16:
end
```

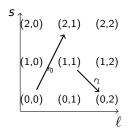


```
unsigned value, m = 0;
unsigned count() {
  unsigned v = 0;
  acquire(m);
  if(value == 0u-1) {
    release(m);
    return 0;
  }
  else {
    v = value;
    value = v + 1;
    release(m);
    assert (value > v);
    return v + 1;
 }
}
int main() {
  while(...)
    thread(&count);
}
```

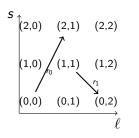


Thread-Transition Systems (TTS)



- Finite-state models extracted from recursion-free, finite-data procedures executed by threads
- (s, l): shared s and local l component.
- Configurations of the form $(s|\ell_1,\ldots,\ell_n)$
- ▶ $(0|0,0) \xrightarrow{r_0} (2|1,0)$

Thread-Transition Systems (TTS)



- Finite-state models extracted from recursion-free, finite-data procedures executed by threads
- (s, l): shared s and local l component.
- Configurations of the form $(s|\ell_1,\ldots,\ell_n)$
- ▶ $(0|0,0) \xrightarrow{r_0} (2|1,0)$

Problem Statement

Given a target conf. $v_F = (s_F | \ell_F)$, can the unbounded-thread system reach a configuration of the form $v = (s_F | \ell_1, \dots, \ell_F, \dots)$?

The coverability problem for TTS

 Coverability is decidable for well-quasi ordered systems. (Finkel and Schnoebelen '01, Abdulla '10) The coverability problem for TTS

 Coverability is decidable for well-quasi ordered systems. (Finkel and Schnoebelen '01, Abdulla '10)

 Complexity Issues: EXPSPACE-complete. (Cardoza et al. '76, Rackoff '78) What if we over-approximate?

What if we over-approximate?

- Esparza et al. encoded the Petri net marking equation into symbolic expressions to over-approximate coverability (CAV'14).
- Out-performed existing approaches with high rate of success on uncoverable instances (inapplicable on coverable).

What if we over-approximate?

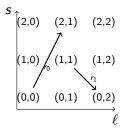
- Esparza et al. encoded the Petri net marking equation into symbolic expressions to over-approximate coverability (CAV'14).
- Out-performed existing approaches with high rate of success on uncoverable instances (inapplicable on coverable).

This work

- Set of equations for TTS expressed in the decidable theory of ILA, whose inconsistency implies *uncoverability* of v_F.
- Algorithm that uses the equations to often prove uncoverable and coverable instances and detect spurious assignments.

Thread State Equations

Thread and Transition Counting



- G = (T, R) where $T = S \times L$ • $\mathbf{r} \in \mathbb{N}^{|R|}$
- ▶ $\boldsymbol{\ell}_{\mathrm{I}} \in \mathbb{N}^{|L|}$

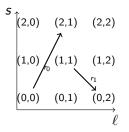
•
$$\ell_F \in \mathbb{N}^{|L|}$$

▶
$$\mathbf{c} \in \{0, 1, -1\}^{|L| \times |R|}$$

 $(0|0,0) \xrightarrow{r_0} (2|1,0)$

$$\mathbf{c}(\ell, r) = \begin{cases} +1 & \text{if transition } r \text{ ends in local state } \ell \\ -1 & \text{if transition } r \text{ starts in local state } \ell \\ 0 & \text{otherwise.} \end{cases}$$

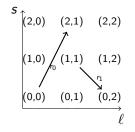
Thread and Transition Counting



- G = (T, R) where $T = S \times L$ • $\mathbf{r} \in \mathbb{N}^{|R|}$
- $\blacktriangleright \ \boldsymbol{\ell}_{\mathrm{I}} \in \mathbb{N}^{|L|}$
- $\boldsymbol{\ell}_F \in \mathbb{N}^{|L|}$
- $\blacktriangleright \ \mathbf{c} \in \{0,1,-1\}^{|L|\times |R|}$

$$\mathcal{C}_{L} = \bigwedge \begin{cases} \mathbf{r} \geq 0 \\ \ell_{I} \geq 0 \\ \ell_{F} \geq 0 \\ \bigwedge_{\ell \notin L_{I}} \ell_{I}(\ell) = 0 \\ \ell_{F} = \ell_{I} + \mathbf{c} \cdot \mathbf{r} \\ \bigwedge_{\ell \in L} \ell_{F}(\ell) \geq |\{i : v_{F}(i) = \ell\}| \end{cases}$$

An example



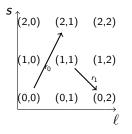
$$\mathcal{C}_{L} = \bigwedge \left\{ \begin{array}{c} \dots \\ \ell_{F} = \ell_{I} + \mathbf{c} \cdot \mathbf{r} \\ \bigwedge_{\ell \in L} \ell_{F}(\ell) \ge |\{i : v_{F}(i) = \ell\}| \end{array} \right.$$

$$v_F = (s_F | \ell_F) = (0|2)$$

$$\ell_F(0) = \ell_I(0) - \mathbf{r}(0)$$

 $\ell_F(1) = \mathbf{r}(0) - \mathbf{r}(1)$
 $\ell_F(2) = \mathbf{r}(1)$
 $\ell_F(2) \ge 1$

An example



$$C_L = \bigwedge \begin{cases} \cdots \\ \ell_F = \ell_I + \mathbf{c} \cdot \mathbf{r} \\ \bigwedge_{\ell \in L} \ell_F(\ell) \ge |\{i : v_F(i) = \ell\}| \end{cases}$$

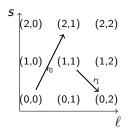
$$v_F = (s_F | \ell_F) = (0|2)$$

$$\mathbf{r} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \boldsymbol{\ell}_{\mathrm{I}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \boldsymbol{\ell}_{F} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 $\ell_F(0) = \ell_I(0) - \mathbf{r}(0)$ $\ell_F(1) = \mathbf{r}(0) - \mathbf{r}(1)$ $\ell_F(2) = \mathbf{r}(1)$ $\ell_F(2) \ge 1$

sat. assignment

An example



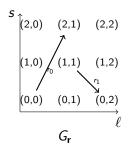
- Ordering is violated
- Shared state not utilized

$$v_F = (s_F | \ell_F) = (0|2)$$

$$\ell_F(0) = \ell_{\mathrm{I}}(0) - \mathbf{r}(0)$$
 $\ell_F(1) = \mathbf{r}(0) - \mathbf{r}(1)$
 $\ell_F(2) = \mathbf{r}(1)$
 $\ell_F(2) \ge 1$

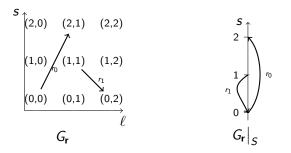
sat. assignment

 $\mathbf{r} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \boldsymbol{\ell}_{\mathrm{I}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \boldsymbol{\ell}_{F} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$



A sequence of transitions forms a path p,

- 1. utilizing the transitions in the *multiplicity* given by **r**,
- 2. synchronizing on the shared states.



A sequence of transitions forms a path p,

- 1. utilizing the transitions in the *multiplicity* given by \mathbf{r} ,
- 2. synchronizing on the shared states.

Observation

1 and 2 are satisfied *iff* p forms an **Euler path** in $G_r|_{S}$

The Seven Bridges of Königsberg

The Seven Bridges of Königsberg

There exists an Euler path from $s_{\rm I}$ to s_F in $G_r|_{\rm S}$ iff:

flow: each shared state except s_{I} and s_{F} is entered and exited the same number of times, and

connectivity: the undirected subgraph of $G_r|_S$ is connected.

Flow Condition

$$flow(s)$$
 :: $\sum_{r \in in(s)} \mathbf{r}(r) - \sum_{r \in out(s)} \mathbf{r}(r) = N$

where

$$N = \begin{cases} 0 & \text{if } s \notin \{s_I, s_F\} \text{ or } s = s_I = s_F \\ -1 & \text{if } s = s_I \neq s_F \\ +1 & \text{if } s = s_F \neq s_I \end{cases}$$

$$\mathcal{C}_F = \bigwedge_{s \in S} \mathit{flow}(s)$$

A full example

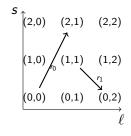
$$\begin{array}{c} s \\ (2,0) \\ (1,0) \\ (0,0) \\ (0,1) \\ (0,2) \\ \ell \end{array}$$

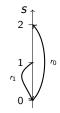
$$s_{\mathrm{I}}=0, s_{F}=0$$

$$\ell_F(0) = \ell_I(0) - \mathbf{r}(0)$$

 $\ell_F(1) = \mathbf{r}(0) - \mathbf{r}(1)$
 $\ell_F(2) = \mathbf{r}(1)$
 $\ell_F(2) \ge 1$

A full example





$$\textit{s}_{\rm I}=0, \textit{s}_{\textit{F}}=0$$

$$\ell_F(0) = \ell_I(0) - \mathbf{r}(0)$$

 $\ell_F(1) = \mathbf{r}(0) - \mathbf{r}(1)$
 $\ell_F(2) = \mathbf{r}(1)$
 $\ell_F(2) \ge 1$

$$r(1) - r(0) = 0$$

 $-r(1) = 0$
 $r(0) = 0$

Coverability via TSE

Algorithm

Input: TTS *G*; initial configuration v_{I} ; final configuration v_{F} **Output:** "uncoverable", or "coverable" + witness path

1:
$$\varphi := \mathcal{C}_L \wedge \mathcal{C}_F$$

2: while $\exists m : m \models \varphi$
3: $n_m := \sum_{\ell \in L} \ell_I(\ell)(m)$
4: if $\operatorname{Fss}(G, n_m) =$ witness p
5: return "coverable" + p
6: $\varphi := \varphi \wedge (n > n_m)$
7: return "uncoverable"

Evaluation

- Compare against state-of-the-art unbounded-thread Boolean program checkers
- Investigate relation to tools targeting Petri nets
 - Conversion times from BP to Petri Nets ignored
 - Experimented with multiple translators

Experimental Setup

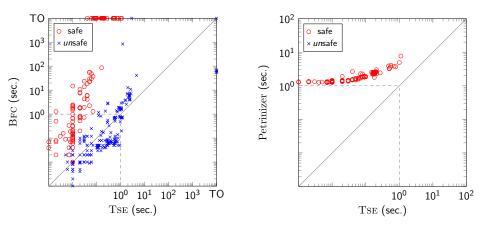
- Benchmark set consisting of 339 concurrent Boolean programs
- ▶ 135 of the Boolean programs are safe (i.e. uncoverable)
- Timeout: 30 minutes

Precision

Success rate on proving Boolean programs either safe or unsafe

tools suite	TSE	Petrinizer	Bfc	BFC- Km	IIC	Mist- Ar	EEC	# instances
safe BP (%)	100	100	57.04	2.22	81.48	94.07	34.81	135
unsafe BP (%)	97.55	-	99.02	98.04	62.75	12.75	18.63	204
total (%)	98.53	-	82.60	59.88	70.21	45.13	25.07	339

Efficiency



Summary

A coverability technique that

- Can verify very often safe instances efficiently
- Can prove coverability in many unsafe instances

TSE

- An incomplete yet practical method using symbolic and explicit state techniques to verify safe and unsafe instances.
- http://www.ccs.neu.edu/home/lpzun/tse/