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unsigned value, m = 0;

unsigned count() {
unsigned v = 0;

acquire(m);
if(value == 0u−1) {

release(m);

return 0;
}
else {

v = value;
value = v + 1;
release(m);
assert(value > v);
return v + 1;
}
}

int main() {
while(...)

thread(&count);
}

inc.c
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void main() begin
l1:

if 0 then goto l6; fi;
start thread goto l2;
goto l5;

l2:
atomic begin;
assume(∗);
atomic end;
if !(∗) then goto l3; fi;
atomic begin;
assume(∗);
atomic end;
goto l4;

l3:
atomic begin;
assume(∗);
atomic end;
assert(!(∗));
goto l4;

l4:
end thread;

l5:
goto l1;

l6:
end

inc.bp
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Thread-Transition Systems (TTS)
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I Finite-state models extracted from
recursion-free, finite-data procedures
executed by threads

I (s, l): shared s and local l component.

I Configurations of the form (s|`1, . . . , `n)

I (0|0, 0)
r07−→ (2|1, 0)

Problem Statement
Given a target conf. vF = (sF |`F ), can the unbounded-thread
system reach a configuration of the form v = (sF |`1, . . . , `F , . . .)?
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The coverability problem for TTS

I Coverability is decidable for well-quasi ordered systems.
(Finkel and Schnoebelen ’01, Abdulla ’10)

I Complexity Issues: EXPSPACE-complete.
(Cardoza et al. ’76, Rackoff ’78)
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What if we over-approximate?

I Esparza et al. encoded the Petri net marking equation into
symbolic expressions to over-approximate coverability (CAV’14).

I Out-performed existing approaches with high rate of success
on uncoverable instances (inapplicable on coverable).

This work

I Set of equations for TTS expressed in the decidable theory of
ILA, whose inconsistency implies uncoverability of vF .

I Algorithm that uses the equations to often prove uncoverable
and coverable instances and detect spurious assignments.
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Thread State Equations



Thread and Transition Counting
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(0|0, 0)
r07−→ (2|1, 0)

I G = (T ,R) where T = S × L

I r ∈ N|R|

I `I ∈ N|L|

I `F ∈ N|L|

I c ∈ {0, 1,−1}|L|×|R|

c(`, r) =


+1 if transition r ends in local state `
−1 if transition r starts in local state `

0 otherwise.
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Thread and Transition Counting
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r ≥ 0
`I ≥ 0
`F ≥ 0∧

` 6∈LI `I(`) = 0

`F = `I + c · r∧
`∈L `F (`) ≥ |{i : vF (i) = `}|
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An example
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CL =
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. . .
`F = `I + c · r∧

`∈L `F (`) ≥ |{i : vF (i) = `}|

vF = (sF |`F ) = (0|2)

`F (0) = `I(0)− r(0)

`F (1) = r(0)− r(1)

`F (2) = r(1)

`F (2) ≥ 1
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sat. assignment

Vast over-approximation

I Ordering is violated

I Shared state not utilized

vF = (sF |`F ) = (0|2)

`F (0) = `I(0)− r(0)

`F (1) = r(0)− r(1)

`F (2) = r(1)
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Gr

A sequence of transitions forms a path p,

1. utilizing the transitions in the multiplicity given by r,

2. synchronizing on the shared states.
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Gr Gr
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S

A sequence of transitions forms a path p,

1. utilizing the transitions in the multiplicity given by r,

2. synchronizing on the shared states.

Observation
1 and 2 are satisfied iff p forms an Euler path in Gr

∣∣
S
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The Seven Bridges of Königsberg

There exists an Euler path from sI to sF in Gr

∣∣
S

iff:

flow: each shared state except sI and sF is entered and exited
the same number of times, and

connectivity: the undirected subgraph of Gr

∣∣
S

is connected.
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Flow Condition

flow(s) ::
∑

r∈in(s)

r(r) −
∑

r∈out(s)

r(r) = N

where

N =


0 if s /∈ {sI , sF} or s = sI = sF
−1 if s = sI 6= sF
+1 if s = sF 6= sI

CF =
∧
s∈S

flow(s)
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A full example
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A full example
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sI = 0,sF = 0

`F (0) = `I(0)− r(0)

`F (1) = r(0)− r(1) r(1)− r(0) = 0

`F (2) = r(1) −r(1) = 0

`F (2) ≥ 1 r(0) = 0
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Coverability via TSE



Algorithm

Input: TTS G ; initial configuration vI; final configuration vF
Output: “uncoverable”, or “coverable” + witness path

1: ϕ := CL ∧ CF
2: while ∃m : m |= ϕ
3: nm :=

∑
`∈L `I(`)(m)

4: if Fss(G , nm) = witness p
5: return “coverable” + p
6: ϕ := ϕ ∧ (n > nm)
7: return “uncoverable”

14



Evaluation

I Compare against state-of-the-art unbounded-thread Boolean
program checkers

I Investigate relation to tools targeting Petri nets
I Conversion times from BP to Petri Nets ignored
I Experimented with multiple translators

Experimental Setup

I Benchmark set consisting of 339 concurrent Boolean programs

I 135 of the Boolean programs are safe (i.e. uncoverable)

I Timeout: 30 minutes
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Precision

Success rate on proving Boolean programs either safe or unsafe

suite
tools

Tse Petrinizer Bfc
Bfc-
Km

IIC
Mist-
Ar

EEC # instances

safe BP (%) 100 100 57.04 2.22 81.48 94.07 34.81 135
unsafe BP (%) 97.55 – 99.02 98.04 62.75 12.75 18.63 204

total (%) 98.53 – 82.60 59.88 70.21 45.13 25.07 339
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Efficiency
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Summary

A coverability technique that

I Can verify very often safe instances efficiently

I Can prove coverability in many unsafe instances

TSE

I An incomplete yet practical method using symbolic and
explicit state techniques to verify safe and unsafe instances.

I http://www.ccs.neu.edu/home/lpzun/tse/
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