17

Appendix

A Uniqueness of the Initial State

It is inexpensive to enforce a unique initial thread state without affecting thread state reachability, provided the initial thread state set T of the given TTD \mathcal{P} satisfies the following "box" property:

$$\forall (s,t) \in T, \ (s',t') \in T : \ (s,t') \in T, \ (s',t) \in T .$$
(5)

This holds if T is a singleton. More generally, it holds if all states in T have the same shared state, and it holds if all states in T have the same local state. It also holds of a set T whose elements form a complete rectangle in the graphical representation of \mathcal{P} .

To enforce a unique initial thread state, we build a new TTD \mathcal{P}' that is identical to \mathcal{P} , except that it has a single initial thread state $t_I = (s_I, l_I)$ with fresh shared and local states s_I, l_I , and the following additional edges:

$$(s_I, l_I) \to (s, l)$$
 such that $(s, l) \in T$, and (6)

$$(s, l_I) \to (s, l)$$
 such that $(s, l) \in T$. (7)

Suppose now some thread state $t_0 = (s_0, l_0)$ is reachable in \mathcal{P}_n , for some n. Then there exists a path from some global state $(s_J|l_1, \ldots, l_n)$ such that $(s_J, l_i) \in T$ for all i, to a global state with shared component s_0 and some thread in local state l_0 . We can attach, to the front of this path, the prefix

$$\begin{array}{rccc} (s_I|l_I,\ldots,l_I) & \rightarrowtail & (\underline{s_J}|\underline{l_1},l_I,l_I,\ldots,l_I) \\ & \searrow & (s_J|l_1,\underline{l_2},l_I,\ldots,l_I) \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\$$

with the underlined symbols changed. The new path reaches t_0 in \mathcal{P}'_n .

Conversely, suppose some thread state $t_0 = (s_0, l_0)$ such that $s_0 \neq s_I$, $l_0 \neq l_I$ is reachable in \mathcal{P}'_n , for some n. Then there exists a path p' from $\{s_I\} \times \{l_I\}^n$ to a global state with shared component s_0 and some thread in local state l_0 . The very first transition of p' is by some thread executing an edge of type (6), since those are the only edges leaving the unique initial state (s_I, l_I) . Let that be thread number i, and let $(s, l) \in T$ be the new state of thread i.

Consider now an arbitrary thread $j \in \{1, ..., n\} \setminus \{i\}$; its local state after the first transition along p' is l_I .

• If thread j is never executed along p', we build a new path p'' by inserting edge $(s, l_I) \rightarrow (s, l)$, executed by thread j, right after the first transition in p'. This is a valid edge (of type (7)) since $(s, l) \in T$. The edge moves thread j into an initial thread state $(s, l) \in T$. The modified state sequence remains a valid path in \mathcal{P}'_n since no shared states have been changed, and thread j is inactive henceforth.

18 Peizun Liu and Thomas Wahl

• If thread j is executed along p', then the first edge it executes must be of type (7), since again this is the only way to get out of local state l_I . Let $(\bar{s}, \bar{l}) \in T$ be the state of thread j after executing this first edge. Then $(s, l_I) \to (s, \bar{l})$ is a valid edge (of type (7)): from $(s, l) \in T$ and $(\bar{s}, \bar{l}) \in T$, we conclude $(s, \bar{l}) \in T$, by property (5). We now build a new path p", by removing from p' thread j's first transition, and instead inserting, right behind the first transition of p', a transition where thread j executes edge $(s, l_I) \to (s, \bar{l})$:

$$p' ::: (s_I, l_I) \xrightarrow{i} (s, t) , \dots , (\bar{s}, l_I) \xrightarrow{j} (\bar{s}, \bar{l})$$

becomes
$$p'' ::: (s_I, l_I) \xrightarrow{i} (s, t) , (s, l_I) \xrightarrow{j} (s, \bar{l}) , \dots$$

(here we add a thread index on top of an edge's arrow, to indicate the identity of the executing thread). The modified state sequence remains a valid path in \mathcal{P}'_n , since the shared states "match" and are not changed by any of the removed or inserted edges. Moving the local state change of thread j (from l_I to \bar{l}) forward leaves the path intact, since the original edge $(\bar{s}, l_I) \to (\bar{s}, \bar{l})$ was thread j's first activity.

This procedure is applied to every thread $j \neq i$, with the result that, after the first *n* transitions, all threads are in a state belonging to *T*. The suffix of p'' following these transitions reaches t_0 in \mathcal{P}_n .

B Proof of Lemma 2

Lem. 2 If thread state t_F is reachable in \mathcal{P}_{∞} , then t_F is also reachable in $\overline{\mathcal{P}}$.

Proof: We show that t_F is reachable in \mathcal{P}^+ ; the fact that t_F is reachable in $\overline{\mathcal{P}}$ then follows from standard properties of the SCC quotient graph.

Let $t_F = (s_F, l_F)$, and $t_I = (s_I, l_I)$ be the initial state. Since t_F is reachable in $\mathcal{P}_{\infty} = \bigcup_{n=1}^{\infty} \mathcal{P}_n$, let *n* be such that t_F is reachable in \mathcal{P}_n via a witness path *p*:

$$p ::: (s_I | \underbrace{l_I, \dots, l_I}_n) \quad \rightarrowtail \quad \cdots \quad \rightarrowtail \quad (s_F | l_1, \dots, l_{i-1}, l_F, l_{i+1}, \dots, l_n).$$
(8)

Let further $(e_i) := (e_1, \ldots, e_z)$ be the sequence of TTD edges executed along p. We drop all "horizontal" edges from (e_i) , i.e. edges of the form $(s, \cdot) \to (s, \cdot)$, to obtain a subsequence $(g_i) := (g_1, \ldots, g_{z'})$ $(z' \leq z)$. Given (g_i) , we construct a path σ from t_I to t_F in \mathcal{P}^+ , by processing the edges g_i , defined recursively as follows:

- (1) Edge g_1 is processed by copying it to σ .
- (2) Suppose edge g_{k-1} has been processed, and suppose its target state is (s, l_i) . Edge g_k 's source state has shared component s as well, since edges g_{k-1} and g_k are consecutive in p, except for some horizontal edges in between that

may have been dropped, but these do not change the shared state. So let g_k 's source state be (s, l_j) .

Edge g_k is now processed as follows. If $l_i = l_j$, append g_k to σ . Otherwise, first append $(s, l_i) \dashrightarrow (s, l_j)$ to σ , then g_k . Note that $(s, l_i) \dashrightarrow (s, l_j)$ is a valid expansion edge in R^+ , since there exist two non-horizontal edges, g_{k-1} and g_k , adjacent to the expansion edge's source and target, respectively.

Step (2) is repeated until all edges g_i have been processed. It is clear by construction that σ is a valid path in \mathcal{P}^+ , and that it starts in $t_I = (s_I, l_I)$. We finally have to show that it ends in $t_F = (s_F, l_F)$. It may in fact not: let (s_F, l_f) be the target state of the final edge $g_{z'}$; l_f may or may not be equal to l_F . If it is not, we append an edge $(s_F, l_f) \dashrightarrow (s_F, l_F)$ to σ . This is a valid expansion edge by Def. 1, and σ now ends in t_F , which is hence reachable in \mathcal{P}^+ . \Box

C Proof of Theorem 3

Before we turn to this proof, we establish a lemma that uses the δ_l 's defined in Sect. 5 to compactly determine local state *l*'s summary along σ^+ .

Lem. 3 Let $b_l = \Sigma_l(1)$ if $l_k = l$ (path σ^+ ends in local state l), and $b_l = \Sigma_l(0)$ otherwise. Then $\Sigma_l(n_l) = n_l \oplus_{b_l} \delta_l$.

The lemma suggests: in order to determine local state l's summary function in compact form, first compute the constant $\Sigma_l(1)$ (or $\Sigma_l(0)$) using Alg. 2. $\Sigma_l(n_l)$ is then the formula as specified in the lemma.

Proof of Lem. 3: by induction on the number k of vertices of $\sigma^+ = t_1, \ldots, t_k$.

k = 1: then σ^+ has no edges, so $\Sigma_l(n_l) = n_l$, $b_l = 0$, and $\delta_l = 0$. Thus, $\Sigma_l(n_l) = n_l = n_l \oplus_{b_l} 0 = n_l \oplus_{b_l} \delta_l$.

 $k \to k+1$: Suppose $\sigma^+ = t_1, \ldots, t_{k+1}$ has k+1 vertices, and Lem. 3 holds for all paths of k vertices. One such path is the **suffix** $\tau^+ = t_2, \ldots, t_{k+1}$ of σ^+ . By the induction hypothesis, τ^+ 's summary function \mathcal{T}_l satisfies $\mathcal{T}_l(n_l) = n_l \oplus_{c_l} \gamma_l$ for the real edge summary γ_l along τ^+ , and $c_l = \mathcal{T}_l(1)$ if $l_{k+1} = l$; otherwise $c_l = \mathcal{T}_l(0)$. Note that τ^+ and σ^+ have the same final state $t_{k+1} = (s_{k+1}, l_{k+1})$.

We now distinguish what Alg. 2 does to the first edge $e_1 = (t_1, t_2) = ((s_1, l_1), (s_2, l_2))$ of σ^+ (which is traversed last):

Case 1: $e_1 \in R$ and $l_1 = l$: Then $\Sigma_l(n_l) = \mathcal{T}_l(n_l) + 1$, $\delta_l = \gamma_l + 1$, and $b_l = c_l + 1$. Using the induction hypothesis (IH), we get $\Sigma_l(n_l) = n_l \oplus_{c_l} (\delta_l - 1) + 1$.

- If $n_l + \delta_l 1 \ge c_l$, then $n_l \oplus_{c_l} (\delta_l 1) + 1 = n_l + \delta_l = n_l \oplus_{b_l} \delta_l$ since $n_l + \delta_l \ge c_l + 1 = b_l$.
- If $n_l + \delta_l 1 < c_l$, then $n_l \oplus_{c_l} (\delta_l 1) + 1 = c_l + 1 = b_l = n_l \oplus_{b_l} \delta_l$ since $n_l + \delta_l < c_l + 1 = b_l$.
- **Case 2:** $e_1 \in R$ and $l_2 = l$: This case is analogous to Case 1; for completeness, we spell it out. We have $\Sigma_l(n_l) = \mathcal{T}_l(n_l) 1$, $\delta_l = \gamma_l 1$, and $b_l = c_l 1$. Using the IH, we get $\Sigma_l(n_l) = n_l \oplus_{c_l} (\delta_l + 1) 1$.

20 Peizun Liu and Thomas Wahl

- If $n_l + \delta_l + 1 \ge c_l$, then $n_l \oplus_{c_l} (\delta_l + 1) - 1 = n_l + \delta_l = n_l \oplus_{b_l} \delta_l$ since $n_l + \delta_l \ge c_l - 1 = b_l$.

- If $n_l + \delta_l + 1 < c_l$, then $n_l \oplus_{c_l} (\delta_l + 1) - 1 = c_l - 1 = b_l = n_l \oplus_{b_l} \delta_l$ since $n_l + \delta_l < c_l - 1 = b_l$.

Case 3: $e_1 \in R^+ \setminus R$ and $l_1 = l$: Then $\Sigma_l(n_l) = \mathcal{T}_l(n_l) \ominus 1 + 1$, $\delta_l = \gamma_l$, and $b_l = c_l \ominus 1 + 1$. Using the IH, we get $\Sigma_l(n_l) = n_l \oplus_{c_l} \delta_l \ominus 1 + 1$.

- If $c_l \ge 1$, then $b_l = c_l$, so $n_l \oplus_{c_l} \delta_l \ge c_l \ge 1$, hence $n_l \oplus_{c_l} \delta_l \ominus 1 + 1 = n_l \oplus_{c_l} \delta_l = n_l \oplus_{b_l} \delta_l$.

- If $c_l = 0$, then $b_l = 1$.
 - If $n_l + \delta_l \ge 1$, then $n_l \oplus_{c_l} \delta_l \ominus 1 + 1 = n_l + \delta_l \ominus 1 + 1 = n_l + \delta_l = n_l \oplus_{b_l} \delta_l$. • If $n_l + \delta_l \le 0$, then $n_l \oplus_{c_l} \delta_l \ominus 1 + 1 = c_l \ominus 1 + 1 = 1 = n_l \oplus_{b_l} \delta_l$.

Case 4: none of the above. In this case e_1 has no impact on the path summary generated by Alg. 2. Thus, $\Sigma_l(n_l) = \mathcal{T}_l(n_l)$; in particular we have $b_l = c_l$ and $\delta_l = \gamma_l$. Further, $\Sigma_l(n_l) = \mathcal{T}_l(n_l) \stackrel{\text{(III)}}{=} n_l \oplus_{c_l} \gamma_l = n_l \oplus_{b_l} \delta_l$.

We now turn to the main goal of this section, the proof of Thm. 3. We repeat it here for convenience, **except** that, applying Lem. 3, we replace term $n_l \oplus_{b_l} \delta_l$ in the original theorem formulation by $\Sigma_l(n_l)$, which simplifies the proof.

Thm. 3 Let superscript $^{(\kappa)}$ denote κ function applications. Then, for $\kappa \geq 1$,

$$\Sigma_l^{(\kappa)}(n_l) = \Sigma_l(n_l) \oplus_{b_l} (\kappa - 1) \cdot \delta_l .$$
(9)

Proof: by induction on κ . For $\kappa = 1$, the right-hand side (rhs) of (9) equals $\Sigma_l(n_l) \oplus_{b_l} 0 = \Sigma_l(n_l)$ since $\Sigma_l(n_l) + 0 = \Sigma_l(n_l) \ge b_l$ by Lem. 3.

Now suppose (9) holds. For the inductive step we obtain:

$$\Sigma_{l}^{(\kappa+1)}(n_{l}) = \Sigma_{l}(\Sigma_{l}^{(\kappa)}(n_{l}))$$

$$\stackrel{(\mathrm{IH})}{=} \Sigma_{l}(\Sigma_{l}(n_{l}) \oplus_{b_{l}} (\kappa-1) \cdot \delta_{l})$$

$$\stackrel{(\mathrm{Lem. 3})}{=} (\Sigma_{l}(n_{l}) \oplus_{b_{l}} (\kappa-1) \cdot \delta_{l}) \oplus_{b_{l}} \delta_{l} .$$
(10)

We now distinguish three cases ($\langle \dots \rangle$ below contains proof step justifications): (1) If $\delta_l \ge 0$:

$$\begin{aligned} & (10) \\ &= \begin{pmatrix} (10) \\ \langle (\kappa-1) \cdot \delta_l \geq 0, \ \Sigma_l(n_l) \geq b_l, \text{ hence } \Sigma_l(n_l) + (\kappa-1) \cdot \delta_l \geq b_l \ \rangle \\ & (\Sigma_l(n_l) + (\kappa-1) \cdot \delta_l) \oplus_{b_l} \delta_l \\ &= & \langle \delta_l \geq 0 \ \rangle \\ & (\Sigma_l(n_l) + (\kappa-1) \cdot \delta_l) + \delta_l \\ &= & \\ & \Sigma_l(n_l) + \kappa \cdot \delta_l \\ &= & \langle \ \Sigma_l(n_l) + \kappa \cdot \delta_l \geq b_l \ \rangle \\ & \Sigma_l(n_l) \oplus_{b_l} \kappa \cdot \delta_l \ , \end{aligned}$$

the final expression being the rhs of (9), for κ replaced by $\kappa + 1$.

(2) If $\delta_l < 0$ and $\Sigma_l(n_l) + (\kappa - 1) \cdot \delta_l < b_l$, then also $\Sigma_l(n_l) + \kappa \cdot \delta_l < b_l$, and:

$$\begin{aligned} & (10) \\ &= \left\langle \begin{array}{c} \left\langle \Sigma_l(n_l) + (\kappa - 1) \cdot \delta_l < b_l \right\rangle \right\rangle \\ & b_l \oplus_{b_l} \delta_l \\ &= \left\langle \left\langle \delta_l < 0 \right\rangle \\ & b_l \\ &= \left\langle \begin{array}{c} \Sigma_l(n_l) + \kappa \cdot \delta_l < b_l \right\rangle \\ & \Sigma_l(n_l) \oplus_{b_l} \kappa \cdot \delta_l \ . \end{aligned}$$

(3) If finally $\delta_l < 0$ and $\Sigma_l(n_l) + (\kappa - 1) \cdot \delta_l \ge b_l$, then (10) reduces to $(\Sigma_l(n_l) + (\kappa - 1) \cdot \delta_l) \oplus_{b_l} \delta_l$. To get an overview of what we need to prove, let

$$\begin{aligned} X &= \Sigma_l(n_l) + (\kappa - 1) \cdot \delta_l , \ X' &= \Sigma_l(n_l) , \\ Y &= \delta_l , \qquad \qquad Y' &= \kappa \cdot \delta_l . \end{aligned}$$

Then (the reduced) (10) equals $X \oplus_{b_l} Y$, and the rhs of (9) equals $X' \oplus_{b_l} Y'$. Further, observe that X + Y = X' + Y'. This implies that $X \oplus_{b_l} Y = X' \oplus_{b_l} Y'$, which follows immediately by distinguishing whether $X + Y \ge b_l$ or not. The equality $X \oplus_{b_l} Y = X' \oplus_{b_l} Y'$ is what we needed to prove. \Box