Appendix

A Uniqueness of the Initial State

It is inexpensive to enforce a unique initial thread state without affecting thread state reachability, provided the initial thread state set T of the given TTD \mathcal{P} satisfies the following "box" property:

$$
\begin{equation*}
\forall(s, t) \in T, \quad\left(s^{\prime}, t^{\prime}\right) \in T: \quad\left(s, t^{\prime}\right) \in T, \quad\left(s^{\prime}, t\right) \in T \tag{5}
\end{equation*}
$$

This holds if T is a singleton. More generally, it holds if all states in T have the same shared state, and it holds if all states in T have the same local state. It also holds of a set T whose elements form a complete rectangle in the graphical representation of \mathcal{P}.

To enforce a unique initial thread state, we build a new TTD \mathcal{P}^{\prime} that is identical to \mathcal{P}, except that it has a single initial thread state $t_{I}=\left(s_{I}, l_{I}\right)$ with fresh shared and local states s_{I}, l_{I}, and the following additional edges:

$$
\begin{align*}
\left(s_{I}, l_{I}\right) & \rightarrow(s, l) \quad \text { such that }(s, l) \in T, \quad \text { and } \tag{6}\\
\left(s, l_{I}\right) & \rightarrow(s, l) \quad \text { such that }(s, l) \in T . \tag{7}
\end{align*}
$$

Suppose now some thread state $t_{0}=\left(s_{0}, l_{0}\right)$ is reachable in \mathcal{P}_{n}, for some n. Then there exists a path from some global state $\left(s_{J} \mid l_{1}, \ldots, l_{n}\right)$ such that $\left(s_{J}, l_{i}\right) \in$ T for all i, to a global state with shared component s_{0} and some thread in local state l_{0}. We can attach, to the front of this path, the prefix

$$
\left.\begin{array}{rlr}
\left(s_{I} \mid l_{I}, \ldots, l_{I}\right) & \mapsto & \left(\underline{s_{J}} \mid \underline{l_{1}}, l_{I}, l_{I}, \ldots, l_{I}\right) \\
& \longmapsto & \left(s_{J} \mid l_{1}, l_{2}, l_{I}, \ldots, l_{I}\right) \\
\ldots
\end{array}\right)
$$

with the underlined symbols changed. The new path reaches t_{0} in \mathcal{P}_{n}^{\prime}.
Conversely, suppose some thread state $t_{0}=\left(s_{0}, l_{0}\right)$ such that $s_{0} \neq s_{I}, l_{0} \neq l_{I}$ is reachable in \mathcal{P}_{n}^{\prime}, for some n. Then there exists a path p^{\prime} from $\left\{s_{I}\right\} \times\left\{l_{I}\right\}^{n}$ to a global state with shared component s_{0} and some thread in local state l_{0}. The very first transition of p^{\prime} is by some thread executing an edge of type (6), since those are the only edges leaving the unique initial state $\left(s_{I}, l_{I}\right)$. Let that be thread number i, and let $(s, l) \in T$ be the new state of thread i.

Consider now an arbitrary thread $j \in\{1, \ldots, n\} \backslash\{i\} ;$ its local state after the first transition along p^{\prime} is l_{I}.

- If thread j is never executed along p^{\prime}, we build a new path $p^{\prime \prime}$ by inserting edge $\left(s, l_{I}\right) \rightarrow(s, l)$, executed by thread j, right after the first transition in p^{\prime}. This is a valid edge (of type (7)) since $(s, l) \in T$. The edge moves thread j into an initial thread state $(s, l) \in T$. The modified state sequence remains a valid path in \mathcal{P}_{n}^{\prime} since no shared states have been changed, and thread j is inactive henceforth.
- If thread j is executed along p^{\prime}, then the first edge it executes must be of type (7), since again this is the only way to get out of local state l_{I}. Let $(\bar{s}, \bar{l}) \in T$ be the state of thread j after executing this first edge. Then $\left(s, l_{I}\right) \rightarrow(s, \bar{l})$ is a valid edge (of type (7)): from $(s, l) \in T$ and $(\bar{s}, \bar{l}) \in T$, we conclude $(s, \bar{l}) \in T$, by property (5). We now build a new path $p^{\prime \prime}$, by removing from p^{\prime} thread j 's first transition, and instead inserting, right behind the first transition of p^{\prime}, a transition where thread j executes edge $\left(s, l_{I}\right) \rightarrow(s, \bar{l})$:

$$
p^{\prime}::\left(s_{I}, l_{I}\right) \xrightarrow{i}(s, t), \quad \ldots \quad,\left(\bar{s}, l_{I}\right) \xrightarrow{j}(\bar{s}, \bar{l})
$$

becomes

$$
p^{\prime \prime}::\left(s_{I}, l_{I}\right) \xrightarrow{i}(s, t),\left(s, l_{I}\right) \xrightarrow{j}(s, \bar{l}), \quad \ldots
$$

(here we add a thread index on top of an edge's arrow, to indicate the identity of the executing thread). The modified state sequence remains a valid path in \mathcal{P}_{n}^{\prime}, since the shared states "match" and are not changed by any of the removed or inserted edges. Moving the local state change of thread j (from l_{I} to $\bar{l})$ forward leaves the path intact, since the original edge $\left(\bar{s}, l_{I}\right) \rightarrow(\bar{s}, \bar{l})$ was thread j 's first activity.

This procedure is applied to every thread $j \neq i$, with the result that, after the first n transitions, all threads are in a state belonging to T. The suffix of $p^{\prime \prime}$ following these transitions reaches t_{0} in \mathcal{P}_{n}.

B Proof of Lemma 2

Lem. 2 If thread state t_{F} is reachable in \mathcal{P}_{∞}, then t_{F} is also reachable in $\overline{\mathcal{P}}$.
Proof: We show that t_{F} is reachable in \mathcal{P}^{+}; the fact that t_{F} is reachable in $\overline{\mathcal{P}}$ then follows from standard properties of the SCC quotient graph.

Let $t_{F}=\left(s_{F}, l_{F}\right)$, and $t_{I}=\left(s_{I}, l_{I}\right)$ be the initial state. Since t_{F} is reachable in $\mathcal{P}_{\infty}=\cup_{n=1}^{\infty} \mathcal{P}_{n}$, let n be such that t_{F} is reachable in \mathcal{P}_{n} via a witness path p :

$$
\begin{equation*}
p::(s_{I} \mid \underbrace{l_{I}, \ldots, l_{I}}_{n}) \quad \rightarrow \quad \cdots \quad\left(s_{F} \mid l_{1}, \ldots, l_{i-1}, l_{F}, l_{i+1}, \ldots, l_{n}\right) . \tag{8}
\end{equation*}
$$

Let further $\left(e_{i}\right):=\left(e_{1}, \ldots, e_{z}\right)$ be the sequence of TTD edges executed along p. We drop all "horizontal" edges from $\left(e_{i}\right)$, i.e. edges of the form $(s, \cdot) \rightarrow(s, \cdot)$, to obtain a subsequence $\left(g_{i}\right):=\left(g_{1}, \ldots, g_{z^{\prime}}\right)\left(z^{\prime} \leq z\right)$. Given $\left(g_{i}\right)$, we construct a path σ from t_{I} to t_{F} in \mathcal{P}^{+}, by processing the edges g_{i}, defined recursively as follows:
(1) Edge g_{1} is processed by copying it to σ.
(2) Suppose edge g_{k-1} has been processed, and suppose its target state is $\left(s, l_{i}\right)$. Edge g_{k} 's source state has shared component s as well, since edges g_{k-1} and g_{k} are consecutive in p, except for some horizontal edges in between that
may have been dropped, but these do not change the shared state. So let g_{k} 's source state be $\left(s, l_{j}\right)$.
Edge g_{k} is now processed as follows. If $l_{i}=l_{j}$, append g_{k} to σ. Otherwise, first append $\left(s, l_{i}\right) \rightarrow\left(s, l_{j}\right)$ to σ, then g_{k}. Note that $\left(s, l_{i}\right) \rightarrow\left(s, l_{j}\right)$ is a valid expansion edge in R^{+}, since there exist two non-horizontal edges, g_{k-1} and g_{k}, adjacent to the expansion edge's source and target, respectively.

Step (2) is repeated until all edges g_{i} have been processed. It is clear by construction that σ is a valid path in \mathcal{P}^{+}, and that it starts in $t_{I}=\left(s_{I}, l_{I}\right)$. We finally have to show that it ends in $t_{F}=\left(s_{F}, l_{F}\right)$. It may in fact not: let $\left(s_{F}, l_{f}\right)$ be the target state of the final edge $g_{z^{\prime}} ; l_{f}$ may or may not be equal to l_{F}. If it is not, we append an edge $\left(s_{F}, l_{f}\right) \rightarrow\left(s_{F}, l_{F}\right)$ to σ. This is a valid expansion edge by Def. 1, and σ now ends in t_{F}, which is hence reachable in \mathcal{P}^{+}.

C Proof of Theorem 3

Before we turn to this proof, we establish a lemma that uses the δ_{l} 's defined in Sect. 5 to compactly determine local state l 's summary along σ^{+}.

Lem. 3 Let $b_{l}=\Sigma_{l}(1)$ if $l_{k}=l$ (path σ^{+}ends in local state l), and $b_{l}=\Sigma_{l}(0)$ otherwise. Then $\Sigma_{l}\left(n_{l}\right)=n_{l} \oplus_{b_{l}} \delta_{l}$.

The lemma suggests: in order to determine local state l 's summary function in compact form, first compute the constant $\Sigma_{l}(1)$ (or $\left.\Sigma_{l}(0)\right)$ using Alg. 2. $\Sigma_{l}\left(n_{l}\right)$ is then the formula as specified in the lemma.

Proof of Lem. 3: by induction on the number k of vertices of $\sigma^{+}=t_{1}, \ldots, t_{k}$.
$k=1$: then σ^{+}has no edges, so $\Sigma_{l}\left(n_{l}\right)=n_{l}, b_{l}=0$, and $\delta_{l}=0$. Thus, $\Sigma_{l}\left(n_{l}\right)=n_{l}=n_{l} \oplus_{b_{l}} 0=n_{l} \oplus_{b_{l}} \delta_{l}$.
$k \rightarrow k+1$: Suppose $\sigma^{+}=t_{1}, \ldots, t_{k+1}$ has $k+1$ vertices, and Lem. 3 holds for all paths of k vertices. One such path is the suffix $\tau^{+}=t_{2}, \ldots, t_{k+1}$ of σ^{+}. By the induction hypothesis, τ^{+}'s summary function \mathcal{T}_{l} satisfies $\mathcal{T}_{l}\left(n_{l}\right)=n_{l} \oplus_{c_{l}} \gamma_{l}$ for the real edge summary γ_{l} along τ^{+}, and $c_{l}=\mathcal{T}_{l}(1)$ if $l_{k+1}=l$; otherwise $c_{l}=\mathcal{T}_{l}(0)$. Note that τ^{+}and σ^{+}have the same final state $t_{k+1}=\left(s_{k+1}, l_{k+1}\right)$.

We now distinguish what Alg. 2 does to the first edge $e_{1}=\left(t_{1}, t_{2}\right)=$ $\left(\left(s_{1}, l_{1}\right),\left(s_{2}, l_{2}\right)\right)$ of σ^{+}(which is traversed last):

Case 1: $e_{1} \in R$ and $l_{1}=l$: Then $\Sigma_{l}\left(n_{l}\right)=\mathcal{T}_{l}\left(n_{l}\right)+1, \delta_{l}=\gamma_{l}+1$, and $b_{l}=c_{l}+1$.
Using the induction hypothesis (IH), we get $\Sigma_{l}\left(n_{l}\right)=n_{l} \oplus_{c_{l}}\left(\delta_{l}-1\right)+1$.

- If $n_{l}+\delta_{l}-1 \geq c_{l}$, then $n_{l} \oplus_{c_{l}}\left(\delta_{l}-1\right)+1=n_{l}+\delta_{l}=n_{l} \oplus_{b_{l}} \delta_{l}$ since $n_{l}+\delta_{l} \geq c_{l}+1=b_{l}$.
- If $n_{l}+\delta_{l}-1<c_{l}$, then $n_{l} \oplus_{c_{l}}\left(\delta_{l}-1\right)+1=c_{l}+1=b_{l}=n_{l} \oplus_{b_{l}} \delta_{l}$ since $n_{l}+\delta_{l}<c_{l}+1=b_{l}$.
Case 2: $e_{1} \in R$ and $l_{2}=l$: This case is analogous to Case 1 ; for completeness, we spell it out. We have $\Sigma_{l}\left(n_{l}\right)=\mathcal{T}_{l}\left(n_{l}\right)-1, \delta_{l}=\gamma_{l}-1$, and $b_{l}=c_{l}-1$.
Using the IH, we get $\Sigma_{l}\left(n_{l}\right)=n_{l} \oplus_{c_{l}}\left(\delta_{l}+1\right)-1$.
- If $n_{l}+\delta_{l}+1 \geq c_{l}$, then $n_{l} \oplus_{c_{l}}\left(\delta_{l}+1\right)-1=n_{l}+\delta_{l}=n_{l} \oplus_{b_{l}} \delta_{l}$ since $n_{l}+\delta_{l} \geq c_{l}-1=b_{l}$.
- If $n_{l}+\delta_{l}+1<c_{l}$, then $n_{l} \oplus_{c_{l}}\left(\delta_{l}+1\right)-1=c_{l}-1=b_{l}=n_{l} \oplus_{b_{l}} \delta_{l}$ since $n_{l}+\delta_{l}<c_{l}-1=b_{l}$.
Case 3: $e_{1} \in R^{+} \backslash R$ and $l_{1}=l$: Then $\Sigma_{l}\left(n_{l}\right)=\mathcal{T}_{l}\left(n_{l}\right) \ominus 1+1, \delta_{l}=\gamma_{l}$, and $b_{l}=c_{l} \ominus 1+1$. Using the IH , we get $\Sigma_{l}\left(n_{l}\right)=n_{l} \oplus_{c_{l}} \delta_{l} \ominus 1+1$.
- If $c_{l} \geq 1$, then $b_{l}=c_{l}$, so $n_{l} \oplus_{c_{l}} \delta_{l} \geq c_{l} \geq 1$, hence $n_{l} \oplus_{c_{l}} \delta_{l} \ominus 1+1=$ $n_{l} \oplus_{c_{l}} \delta_{l}=n_{l} \oplus_{b_{l}} \delta_{l}$.
- If $c_{l}=0$, then $b_{l}=1$.
- If $n_{l}+\delta_{l} \geq 1$, then $n_{l} \oplus_{c_{l}} \delta_{l} \ominus 1+1=n_{l}+\delta_{l} \ominus 1+1=n_{l}+\delta_{l}=n_{l} \oplus_{b_{l}} \delta_{l}$.
- If $n_{l}+\delta_{l} \leq 0$, then $n_{l} \oplus_{c_{l}} \delta_{l} \ominus 1+1=c_{l} \ominus 1+1=1=n_{l} \oplus_{b_{l}} \delta_{l}$.

Case 4: none of the above. In this case e_{1} has no impact on the path summary generated by Alg. 2 . Thus, $\Sigma_{l}\left(n_{l}\right)=\mathcal{T}_{l}\left(n_{l}\right)$; in particular we have $b_{l}=c_{l}$ and $\delta_{l}=\gamma_{l}$. Further, $\Sigma_{l}\left(n_{l}\right)=\mathcal{T}_{l}\left(n_{l}\right) \stackrel{(\mathrm{IH})}{=} n_{l} \oplus_{c_{l}} \gamma_{l}=n_{l} \oplus_{b_{l}} \delta_{l}$.

We now turn to the main goal of this section, the proof of Thm. 3. We repeat it here for convenience, except that, applying Lem. 3, we replace term $n_{l} \oplus_{b_{l}} \delta_{l}$ in the original theorem formulation by $\Sigma_{l}\left(n_{l}\right)$, which simplifies the proof.

Thm. 3 Let superscript ${ }^{(\kappa)}$ denote κ function applications. Then, for $\kappa \geq 1$,

$$
\begin{equation*}
\Sigma_{l}^{(\kappa)}\left(n_{l}\right)=\Sigma_{l}\left(n_{l}\right) \oplus_{b_{l}}(\kappa-1) \cdot \delta_{l} \tag{9}
\end{equation*}
$$

Proof: by induction on κ. For $\kappa=1$, the right-hand side (rhs) of (9) equals $\Sigma_{l}\left(n_{l}\right) \oplus_{b_{l}} 0=\Sigma_{l}\left(n_{l}\right)$ since $\Sigma_{l}\left(n_{l}\right)+0=\Sigma_{l}\left(n_{l}\right) \geq b_{l}$ by Lem. 3 .

Now suppose (9) holds. For the inductive step we obtain:

$$
\begin{align*}
\Sigma_{l}^{(\kappa+1)}\left(n_{l}\right) & =\Sigma_{l}\left(\Sigma_{l}^{(\kappa)}\left(n_{l}\right)\right) \\
& \stackrel{(\text { (H) })}{=} \Sigma_{l}\left(\Sigma_{l}\left(n_{l}\right) \oplus_{b_{l}}(\kappa-1) \cdot \delta_{l}\right) \\
& \stackrel{(\text { Lem. }}{=}{ }^{3)}\left(\Sigma_{l}\left(n_{l}\right) \oplus_{b_{l}}(\kappa-1) \cdot \delta_{l}\right) \oplus_{b_{l}} \delta_{l} \tag{10}
\end{align*}
$$

We now distinguish three cases ($\langle\ldots\rangle$ below contains proof step justifications):
(1) If $\delta_{l} \geq 0$:

$$
\begin{align*}
= & \left\langle(\kappa-1) \cdot \delta_{l} \geq 0, \Sigma_{l}\left(n_{l}\right) \geq b_{l}, \text { hence } \Sigma_{l}\left(n_{l}\right)+(\kappa-1) \cdot \delta_{l} \geq b_{l}\right\rangle \tag{10}\\
& \left(\Sigma_{l}\left(n_{l}\right)+(\kappa-1) \cdot \delta_{l}\right) \oplus_{b_{l}} \delta_{l} \\
= & \left\langle\delta_{l} \geq 0\right\rangle \\
= & \left(\Sigma_{l}\left(n_{l}\right)+(\kappa-1) \cdot \delta_{l}\right)+\delta_{l} \\
= & \Sigma_{l}\left(n_{l}\right)+\kappa \cdot \delta_{l} \\
= & \left\langle\Sigma_{l}\left(n_{l}\right)+\kappa \cdot \delta_{l} \geq b_{l}\right\rangle \\
& \Sigma_{l}\left(n_{l}\right) \oplus_{b_{l}} \kappa \cdot \delta_{l},
\end{align*}
$$

the final expression being the rhs of (9), for κ replaced by $\kappa+1$.
(2) If $\delta_{l}<0$ and $\Sigma_{l}\left(n_{l}\right)+(\kappa-1) \cdot \delta_{l}<b_{l}$, then also $\Sigma_{l}\left(n_{l}\right)+\kappa \cdot \delta_{l}<b_{l}$, and:
(10)

$$
\begin{aligned}
= & \left\langle\Sigma_{l}\left(n_{l}\right)+(\kappa-1) \cdot \delta_{l}<b_{l}\right\rangle \\
& b_{l} \oplus_{b_{l}} \delta_{l} \\
= & \left\langle\delta_{l}<0\right\rangle \\
= & b_{l} \\
= & \left\langle\Sigma_{l}\left(n_{l}\right)+\kappa \cdot \delta_{l}<b_{l}\right\rangle \\
& \Sigma_{l}\left(n_{l}\right) \oplus_{b_{l}} \kappa \cdot \delta_{l} .
\end{aligned}
$$

(3) If finally $\delta_{l}<0$ and $\Sigma_{l}\left(n_{l}\right)+(\kappa-1) \cdot \delta_{l} \geq b_{l}$, then (10) reduces to $\left(\Sigma_{l}\left(n_{l}\right)+(\kappa-1) \cdot \delta_{l}\right) \oplus_{b_{l}} \delta_{l}$. To get an overview of what we need to prove, let

$$
\begin{array}{ll}
X=\Sigma_{l}\left(n_{l}\right)+(\kappa-1) \cdot \delta_{l}, & X^{\prime}=\Sigma_{l}\left(n_{l}\right), \\
Y=\delta_{l}, & Y^{\prime}=\kappa \cdot \delta_{l}
\end{array}
$$

Then (the reduced) (10) equals $X \oplus_{b_{l}} Y$, and the rhs of (9) equals $X^{\prime} \oplus_{b_{l}} Y^{\prime}$. Further, observe that $X+Y=X^{\prime}+Y^{\prime}$. This implies that $X \oplus_{b_{l}} Y=X^{\prime} \oplus_{b_{l}} Y^{\prime}$, which follows immediately by distinguishing whether $X+Y \geq b_{l}$ or not. The equality $X \oplus_{b_{l}} Y=X^{\prime} \oplus_{b_{l}} Y^{\prime}$ is what we needed to prove.

