Enhancing End-to-End Tracing Systems

for Automated Performance Debugging in Distributed
Systems

Jethro S. Sun
January 23, 2018

MassOpenCloud Research Group

Introduction

A Sad Story ...

A Sad Story ...

A distributed system is one in which
the failure of a computer you didn’t

even know existed can render your own
computer unusable.

— Leslie Lamport

A Sad Story ...

What developers and operators really
need is a way to understand and
troubleshoot a distributed system as a
whole.

Performance Diagnosis in OpenStack

OPENSTACK Bug # 1587777 was filed against HOR1ZON.

O OpenStack Identity (keystone)

openstack
Overview Code m Blueprints ~ Translations ~ Answers
.
Mitaka: dashboard performance ¢
Bug #1587777 reported Jy'a eblock@nde.ag on 2016-06-01
This bug affects 1 person. Does this bug affect you? &

Affects Status Importance

[> [Openstack Identity (keystone) (# Fix Released (# Medium
(@) Also affects project @ (@ Also affects distribution/package
Bug Description

Environment: Openstack Mitaka on top of Leap 42.1, 1 control node, 2
compute nodes, 3-node-Ceph-cluster.

Issue: Since switching to Mitaka, we're experiencing severe delays when
accessing the dashboard - i.e. switching between "Compute - Overview" and
"Compute - Instances" takes 15+ seconds, even after multiple invocations.

Performance Diagnosis in OpenStack

And only took 10 Month to figure out it was something wrong
in KEYSTONE.

& eblock@nde.ag (eblock) on 2017-04-13
Changed in horizon:

status:Expired - New

a Akihiro Motoki (amotoki) wrote on 2017-04-18:

Is it a keystone issue now?

a Akihiro Motoki (amotoki) wrote on 2017-04-18:

After following the comments above, it looks related to keystone not
horizon now. Changing the project.

affects:horizon - keystone

Performance Diagnosis in OpenStack

Question:
Is there a way to make developers’ and operators’ life
less miserable?

Performance Diagnosis in OpenStack

Question:
Is there a way to make developers’ and operators’ life
less miserable?

YES. End-to-end tracing

End-to-End Tracing, what is it and
where we are today?

End-to-End Tracing

Definition (End-to-End Tracing)

End-to-end tracing captures the workflow of causally-related
activity (e.g., work done to process a request) within and among
every component of a distributed system.!

».» Request workflows

Boundary
U Work
348 ,
oU v g
o
Q
m
>
2
M
L4 :
Uuoyv
App server Client Server Distributed

Table store filesystem

180, you want to trace your distributed system? Key design insights from
years of practical experience. Raja Sambasivan et al.

A Typical End-to-End Tracing Infrastructure

Definition (Trace Metadata)

Fields propagated with causally-related event to identify
their workflows. They are usually unique IDs or in a format of
logical clock stored thread-locally or context-locally.

Definition (Trace Points)
Instrumentation points in the system used to identify
individual work done, and also propagate necessary metadata.

Definition (Backend)
Central collector that gathers pieces of trace data and
reconstruct them into full feature-riched trace.

End-to-end Tracing gains its popularity gradually...

2002
2004
2005
2006
2007
2010
2012
2013
2014
2015

2017

Pinpoint

Magpie, SDI

Causeway

Pip, Stardust

X-Trace

Google Dapper

Zipkin, HTrace

Node.js CLS

Apple Activity Tracing, Blkin

AppNeta, AppDynamics, NewRelic,
OSProfiler

End-to-end Tracing gains its popularity gradually...

2002 Pinpoint

2004 ¢ Magpie, SDI

2005 Causeway

2006 | Pip, Stardust

2007 ¢+ X-Trace

2010 ¢ Google Dapper

2012 Zipkin, HTrace

2013 ¢ Node.js CLS

2014 | Apple Activity Tracing, Blkin

2015 ¢+ AppNeta, AppDynamics, NewRelic,
OSProfiler

2017 ..., Twitter, Prezi, SoundCloud, HDFS, HBase,
Accumulo, Phoenix, Baidu, Neflit, Pivotal,
Coursera, Census (Google), Canopy
(Facebook), Jaeger (Uber), ...

End-to-End Tracing Systems Service Model

To distinguish tracing systems:

End-to-End Tracing Systems Service Model

To distinguish tracing systems:

* On-demand (Rudimentary)

End-to-End Tracing Systems Service Model

To distinguish tracing systems:
* On-demand (Rudimentary)

* Be always on (Smart Sampling)

End-to-End Tracing Systems Service Model

To distinguish tracing systems:
* On-demand (Rudimentary)
* Be always on (Smart Sampling)

* Collect trace data asynchronously

End-to-End Tracing Systems Service Model

To distinguish tracing systems:
* On-demand (Rudimentary)
* Be always on (Smart Sampling)
* Collect trace data asynchronously

* DAG-based model to represent events

End-to-End Tracing Systems Service Model

To distinguish tracing systems:
* On-demand (Rudimentary)
* Be always on (Smart Sampling)
* Collect trace data asynchronously
* DAG-based model to represent events

* Logical clock support

Comparing End-to-End Tracing Systems

Table 2: Comparing end-to-end tracing systems features between
Jaeger, Zipkin, Pivot Tracing, Dapper, Canopy, OSProfiler and Blkin.

Systems Can Be Appliedto Rudimentary Features Needed to Be Always on Advanced Features
On-demand Sampling Async. Collect. DAG-based Model Interval Tree Clock
Jaeger Tracing Broadly (K8s, OpensShift) X v v X X
Zipkin Tracing Broadly X v v X X
Pivot Tracing Hadoop/Java based systems X v v v v
Dapper N/A X v v X X
Canopy N/A X v v v X

OSProfiler

Blkin

Comparing End-to-End Tracing Systems

Table 2: Comparing end-to-end tracing systems features between
Jaeger, Zipkin, Pivot Tracing, Dapper, Canopy, OSProfiler and Blkin.

Systems Can Be Appliedto Rudimentary Features Needed to Be Always on Advanced Features

On-demand Sampling Async. Collect. DAG-based Model Interval Tree Clock
Jaeger Tracing Broadly (K8s, OpensShift) X v v X X
Zipkin Tracing Broadly X v v X X
Pivot Tracing Hadoop/Java based systems X v v v v
Dapper N/A X v v X x
Canopy N/A X v v v X
OSProfiler OpenStack v X X X X
Blkin Ceph v X X X X

Approaches for Enabling
Sophisticated Tracing in OpenStack

Jaeger vs OSProfiler

Jaeger Tracing
DISADVANTAGES
ADVANTAGES
e Doesn’t support
DAG-based model

e Doesn't use advanced
logical clock as the
metadata

e Support smart
sampling

e Support collecting
trace data async.

Jaeger vs OSProfiler

OSProfiler

DISADVANTAGES

ADVANTAGES * Doesn’t have sampling

e Doesn't collect trace data

* Rudimentary on-demand
asynchronously

tracing
* Doesn’t support

DAG-based model

e Doesn't use advanced

* Already adopt by
OpenStack and have

instrumentation
logical clock as the

metadata

Jaeger vs OSProfiler

OSProfiler

DISADVANTAGES

° i i
TR RTIACTES Doesn’t have sampling

e Doesn'’t collect trace data

* Rudimentary on-demand

. asynchronousl
tracing ynenronousty

e Already adopt by * Doesn't support

OpenStack and have Dl E-loeerel 1m0l
instrumentation * Doesn’t use advanced

logical clock as the
metadata

Jaeger vs OSProfiler

OSProfiler with Jaeger Tracing

ADVANTAGES
DISADVANTAGES
* Rudimentary on-demand
. Doesn't-have sampling
tracing ¢
Doesr’teollecttrace data
* Already adopt by *
asynehronousty
OpenStack and have
instrumentation * Doesn't support

DAG-based model

e Doesn't use advanced
logical clock as the
metadata

Jaeger vs OSProfiler

OSProfiler with Jaeger Tracing

ADVANTAGES DISADVANTAGES

* Rudimentary on-demand e D) i

tracing o Doesn'teollecttracedata

e Already adopt by asynchronously
QpenStack an.d have e Doesn’t support
Instrumentation

DAG-based model

¢ Doesn’t use advanced
logical clock as the

* Modifications we done
can be directly other
Jaeger instrumented

systems metadata

Feasibility

Key Challenges:
Trace Metadata/OSProfiler library change
e Implement CONTEXT generation using Jaeger
e Implement CONTEXT propagation using Jaeger
Trace Points/OpenStack instrumentation

¢ All of the instrumentation will be able to be
reused?

Backend side
* Need to deploy Backend/Collector for Jaeger
Tracing

2Modifying instrumentation for the purpose of our research is orthogonal.

10

Feasibility

Key Challenges:
Trace Metadata/OSProfiler library change
e Implement CONTEXT generation using Jaeger
e Implement CONTEXT propagation using Jaeger
Trace Points/OpenStack instrumentation

¢ All of the instrumentation will be able to be
reused? v’

Backend side
* Need to deploy Backend/Collector for Jaeger
Tracing v/

2Modifying instrumentation for the purpose of our research is orthogonal.

10

Feasibility

Definition (Context)
Context is an abstraction of the metadata so that it is
easier to interact with (injecting/extracting a trace to/from).

Example Implementation

// Context holds the basic metadata.
type Context struct {
TraceID uint64
SpanID uint64
Sampled bool
Baggage map[stringlstring // initialized on first use

3

11

Feasibility: Context Generation

CONTEXT generation:
All of the modification will be done in OSProfiler

library®

» The span context generation will be done using
Jaeger to substitute the OSProfiler implementation.

3In OpenStack developers instrument their codebase using functionalities
implemented in OSProfiler library.

12

Feasibility: Context Propagation

CONTEXT propagation:

OpenStack Instrumentation side

e REST API
Transform the metadata propagation in OpenStack
clients to propagate Jaeger metadata. We might
only need to change OSProfiler library.

e RPCAPI
Need to implement helper functions for metadata
propagation RPC. We might need to modify
component codebase depends on the RCP is
handled in different components.

OSProfiler Library side
* Need to deploy Backend/Collector for Jaeger

Tracing 12

Status Update

CONTEXT generation:
 Atalk during 2017 OpenStack Sydney Summit
demonstrates how easy to plainly record all the
OSProfiler tracing information in Jaeger. (i.e.
Context generation is done in OSProfiler)
* Additionally we need to generate context using
Jaeger tracing.

CONTEXT propagation:

e Will begin to look at ways to enforce metadata
propagation in OpenStack RPC API and REST API

13

Jaeger Tracing Approach

OSProfiler with Jaeger

Two key challenges to address:

e Doesn’t support DAG-based model

* Doesn’t use advanced logical clock as the metadata

14

OSProfiler with Jaeger

Two key challenges to address:

e Doesn't support DAG-based model

* Doesn’t use advanced logical clock as the metadata

14

DAG-based Model vs Span Model

Definition (Span)

A Span represents a logical unit of work in the system that
has an operation name, the start time of the operation, and the
duration. Spans may be nested and ordered to model causal
relationships. An RPC call is an example of a span.

| ; |
TRACE
N

e]

SPANS 15

DAG-based Model vs Span Model

Definition (DAG-based Model)

Modeling traces as directed, acyclic graphs (DAGs), with
nodes representing events in time, and edges representing
causality.

15

DAG-based Model vs Span Model

Pattern #1

grunt. Start

func bar and func grunt are
issued by func foo
concurrently, and func foo
only ends after both of the
individual work are done in
func bar and func grunt.

grunt.Stop

foo.Stop

15

DAG-based Model vs Span Model

Pattern #1

grunt. Start

func bar and func grunt are
issued by func foo
concurrently, and func foo
only ends after both of the
individual work are done in

func bar and func grunt.

grunt.Stop

This pattern we referred to
Jfan-in-and-fan-out in our
group.

foo.Stop

15

DAG-based Model vs Span Model

Pattern #2

func bar and func grunt are also both
issued by func foo, but func grunt
can start only after the work in func
bar is done.

grunt.Stop

15

DAG-based Model vs Span Model

Pattern #2

func bar and func grunt are also both
issued by func foo, but func grunt
can start only after the work in func
bar is done.

func bar and func grunt are executed
in sequential instead of in parallel.

grunt.Stop

15

DAG-based Model vs Span Model

foo.Start -- foo.Stop
grunt.Start -- grunt.Stop

bar.Start -- bar.Stop

A A

thud.Start -- thud.Stop

Since span model doesn’t really capture concurrency
and synchronization, PATTERN #1 and PATTERN #2 are
both recognized and documented as the same.

15

Applying DAG-based Model

To be able to adopt the DAG-based model, start and stop
of a span must be treated as separate events, and get
captured.

16

Status Update

* Implemented a Proof-of-Concept in OSProfiler
before we are considering move to Jaeger Tracing.

* Now need to re-implement in Jaeger and evaluate it

17

Logical Clock Support for Metadata Propagation

18

Metadata Propagation

19

Metadata Propagation

- At the heart of end-to-end tracing is
metadata propagation to identify
causally-related events across nodes.

19

Metadata Propagation

- At the heart of end-to-end tracing is
metadata propagation to identify
causally-related events across nodes.

« Usually the metadata are stored in
thread-local or context-local storage.

19

Metadata Propagation

Example Implementation
Span (
Tracer tracer,
String operationName,
SpanContext context,
long startTimeMicroseconds,

long startTimeNanoTicks,

)
// SpanContext holds the basic Span metadata.
type SpanContext struct {

TraceID uint64

SpanID uint64

Sampled bool

Baggage map[stringlstring // initialized on first use

20

Logical Clock Support for Metadata Propagation

Limitations:

e Simple timestamp are not resilient to failures
 Extremely tricky to deal with “fan-in and fan-out”

* Usually need a static view of the distributed system
for generating the globally unique identifier

21

Interval Tree Clock

Interval Tree Clock:
e Can create, retire and reuse identifiers
autonomously.

* Works in dynamically setting (stamps grow and
shrink adapting to the system)

Interval Tree Clock models causality tracking by

operations:
* FORK

Branch a stamp into a pair.
e EVENT
Add a new event to the component.
* JOIN
Merge two stamps to create a new one.
22

Status Update

Our Plan:

Use Interval Tree Clock as the logical clock to avoid
dealing with the branching and rejoining using random
identifiers.

23

Additional Changes If without
Jaeger

Requirements for Always-on

To control the cost of the metadata propagation,
Tracing Agents are deployed to:

e collection trace data asynchronously
* enforce smart sampling methods

 control the usage of local resources

24

Requirements for Always-on

Jaegr Tracing:
The agent abstracts the routing and discovery of the
collectors away from the client.

JAEGER N

Zila
2

>®

-
n

A

OPENTRACING

Host or Container

— : 3 jaeger-ui
Application jaegel(' gg;lector (React)

Trace

Instrumentation Reporting E] Erﬁue\i D
OpenTracing API | | |Teramer jaeger-query

(Go)

Adaptive
jaeger-client | Sampling

Trace Reporting
Thrift over UDP

jaeger-agent
(Go)

Control Flow.

Data Store
(Cassandra)

SEEKS

Control Flow

24

* We think adopting Jaeger in OSProfiler can avoid
unnecessary effort for performance diagnosis in
OpenStack.

* We identify implementing DAG-based model and
advanced logical clock in the tracing infrastructure to be
the important part in a novel and efficient end-to-end
tracing system.

25

	Introduction
	End-to-End Tracing, what is it and where we are today?
	Approaches for Enabling Sophisticated Tracing in OpenStack
	Jaeger Tracing Approach
	Additional Changes If without Jaeger

